Constructive approximation of a ball by polytopes

Martin Kochol

Mathematica Slovaca (1994)

  • Volume: 44, Issue: 1, page 99-105
  • ISSN: 0139-9918

How to cite

top

Kochol, Martin. "Constructive approximation of a ball by polytopes." Mathematica Slovaca 44.1 (1994): 99-105. <http://eudml.org/doc/34376>.

@article{Kochol1994,
author = {Kochol, Martin},
journal = {Mathematica Slovaca},
keywords = {approximation of balls by polytopes},
language = {eng},
number = {1},
pages = {99-105},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Constructive approximation of a ball by polytopes},
url = {http://eudml.org/doc/34376},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Kochol, Martin
TI - Constructive approximation of a ball by polytopes
JO - Mathematica Slovaca
PY - 1994
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 44
IS - 1
SP - 99
EP - 105
LA - eng
KW - approximation of balls by polytopes
UR - http://eudml.org/doc/34376
ER -

References

top
  1. BÁRÁNY I., FÜREDI Z., Computing the volume is difficult, Discrete Comput. Geom. 2 (1987), 319-326, and in: Proc. 18th Annual ACM Symposium on Theory of Computing, Berkeley, California, 1986, pp. 442-447. (1987) Zbl0628.68041MR0911186
  2. BÁRÁNY I., FÜREDI Z., Approximation of the sphere by polytopes having few vertгces, Proc. Amer. Math. Soc. 102 (1988), 651-659. (1988) MR0928998
  3. CARL B., Inequalities of Berstein-Jackson-type and the degree of compactness of operators in Banach spaces, Ann. Inst. Fourier (Grenoble) 35 (1985), 79-118. (1985) MR0810669
  4. CARL B., PAJOR A., Gelfand numbers of operators with values in Hilbert spaces, Invent. Math. 94 (1988), 479-504. (1988) MR0969241
  5. DANZER L., GRÜNBAUM B., KLEE V., Helley's theorem and its relatives, In: Convexity (V. L. Klee, ed.), Amer. Math. Soc., Providence, Rhode Island, 1963, pp. 101-180. (1963) MR0157289
  6. GOFFIN J. L., Variable metric relaxation methods, Part II: The ellipsoid method, Math. Programming 30 (1984), 147-162. (1984) MR0758001
  7. GRÖTCHEL M., LOVÁSZ L., SCHRIJVER A., Geometric Algorгthms and Combinatorial Optimization, Springer-Verlag, Berlin, 1988. (1988) 

NotesEmbed ?

top

You must be logged in to post comments.