Constructive approximation of a ball by polytopes
Mathematica Slovaca (1994)
- Volume: 44, Issue: 1, page 99-105
- ISSN: 0139-9918
Access Full Article
topHow to cite
topReferences
top- BÁRÁNY I., FÜREDI Z., Computing the volume is difficult, Discrete Comput. Geom. 2 (1987), 319-326, and in: Proc. 18th Annual ACM Symposium on Theory of Computing, Berkeley, California, 1986, pp. 442-447. (1987) Zbl0628.68041MR0911186
- BÁRÁNY I., FÜREDI Z., Approximation of the sphere by polytopes having few vertгces, Proc. Amer. Math. Soc. 102 (1988), 651-659. (1988) MR0928998
- CARL B., Inequalities of Berstein-Jackson-type and the degree of compactness of operators in Banach spaces, Ann. Inst. Fourier (Grenoble) 35 (1985), 79-118. (1985) MR0810669
- CARL B., PAJOR A., Gelfand numbers of operators with values in Hilbert spaces, Invent. Math. 94 (1988), 479-504. (1988) MR0969241
- DANZER L., GRÜNBAUM B., KLEE V., Helley's theorem and its relatives, In: Convexity (V. L. Klee, ed.), Amer. Math. Soc., Providence, Rhode Island, 1963, pp. 101-180. (1963) MR0157289
- GOFFIN J. L., Variable metric relaxation methods, Part II: The ellipsoid method, Math. Programming 30 (1984), 147-162. (1984) MR0758001
- GRÖTCHEL M., LOVÁSZ L., SCHRIJVER A., Geometric Algorгthms and Combinatorial Optimization, Springer-Verlag, Berlin, 1988. (1988)