A value-distribution criterion for the class and some related questions
M. Essen; D. F. Shea; C. S. Stanton
Annales de l'institut Fourier (1985)
- Volume: 35, Issue: 4, page 127-150
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEssen, M., Shea, D. F., and Stanton, C. S.. "A value-distribution criterion for the class $L~{\rm log} L$ and some related questions." Annales de l'institut Fourier 35.4 (1985): 127-150. <http://eudml.org/doc/74691>.
@article{Essen1985,
abstract = {We give a necessary and sufficient condition for an analytic function in $H^ 1$ to have real part in class $L$$\log L$. This condition contains the classical one of Zygmund; other variants are also given.},
author = {Essen, M., Shea, D. F., Stanton, C. S.},
journal = {Annales de l'institut Fourier},
keywords = {analytic function in },
language = {eng},
number = {4},
pages = {127-150},
publisher = {Association des Annales de l'Institut Fourier},
title = {A value-distribution criterion for the class $L~\{\rm log\} L$ and some related questions},
url = {http://eudml.org/doc/74691},
volume = {35},
year = {1985},
}
TY - JOUR
AU - Essen, M.
AU - Shea, D. F.
AU - Stanton, C. S.
TI - A value-distribution criterion for the class $L~{\rm log} L$ and some related questions
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 4
SP - 127
EP - 150
AB - We give a necessary and sufficient condition for an analytic function in $H^ 1$ to have real part in class $L$$\log L$. This condition contains the classical one of Zygmund; other variants are also given.
LA - eng
KW - analytic function in
UR - http://eudml.org/doc/74691
ER -
References
top- [1] A. BAERNSTEIN, Integral means, univalent functions and circular symmetrization, Acta Math., 133 (1974), 133-169. Zbl0315.30021MR54 #5456
- [2] A. BAERNSTEIN, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J., 27 (1978), 833-852. Zbl0372.42007MR80g:30022
- [3] M. BENEDICKS, Positive harmonic functions vanishing on the boundary of certain domains in Rn, Ark. f. Mat., 18 (1980), 53-72. Zbl0455.31009MR82h:31004
- [4] D. L. BURKHOLDER, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math., 26 (1977), 182-205. Zbl0372.60112MR57 #14163
- [5] D. L. BURKHOLDER, Brownian Motion and the Hardy Spaces Hp, in Aspects of Contemporary Complex Analysis, editors Brannan and Clunie, Academic Press 1980, 97-118. Zbl0497.30028MR84a:30061
- [6] P. DUREN, Theory of Hp-spaces, Academic Press, 1970. Zbl0215.20203MR42 #3552
- [7] M. ESSÉN and D. F. SHEA, On some questions of uniqueness in the theory of symmetrization, Ann. Acad. Sci. Fennicae, Series A. I. Math., 4 (1978/1979), 311-340. Zbl0392.31001MR81d:30002
- [8] M. ESSÉN and D. F. SHEA, Some recent results on conjugate functions in the unit disk. Proc. of the 18th Scand. Congress of Mathematicians, 1980, Progress in Mathematics, Vol. 11, Birkhäuser. Zbl0462.30025
- [8a] M. ESSÉN and K. HALISTE, J. L. LEWIS and D.F. SHEA, Harmonic Majorization and classical analysis, J. London Math. Soc. (to appear). Zbl0558.30027
- [9] K. HALISTE, Estimates of harmonic measure, Ark. f. Mat., 6 (1965), 1-31. Zbl0178.13801MR34 #1547
- [10] K. HALISTE, Harmonic Majorization, Report No. 5 (1982), Department of Mathematics, University of Umeå, Sweden.
- [11] W. K. HAYMAN, Meromorphic Functions, Oxford University Press, 1964. Zbl0115.06203MR29 #1337
- [12] W. K. HAYMAN and P. B. KENNEDY, Subharmonic Functions, vol. 1, Academic Press, 1976. Zbl0419.31001MR57 #665
- [13] W. K. HAYMAN and Ch. POMMERENKE, On analytic functions of bounded mean oscillation, Bull. London Math. Soc., 10 (1978), 219-224. Zbl0386.30011MR81g:30044
- [14] W. K. HAYMAN and A. WEITSMAN, On the coefficients of functions omitting values, Math. Proc. Cambridge Philos. Soc., 77 (1975), 119-137. Zbl0301.30011MR50 #13495
- [15] O. LEHTO, A majorant principle in the theory of functions, Math. Scand., 1 (1953), 5-17. Zbl0051.05906MR15,115d
- [16] R. NEVANLINNA, Analytic functions, Springer-Verlag, 1970. Zbl0199.12501
- [17] K. E. PETERSEN, Brownian motion, Hardy spaces and Bounded Mean Oscillation, London Math. Soc. Lecture Note Series, 28 (1977). Zbl0363.60004MR58 #31383
- [18] L. I. RONKIN, Introduction to the theory of entire functions of several complex variables, Transl. Math. Monographs, Vol. 44, Amer. Math. Soc., Providence, R. I. 1974. Zbl0286.32004MR49 #10901
- [19] C. S. STANTON, Riesz mass and growth problems for subharmonic functions, Thesis, University of Wisconsin 1982.
- [20] W. STOLL, About entire and meromorphic functions of exponential type, Proc. of Symp. in Pure Math., Vol. XI, Amer. Math. Soc., Providence, R.I. 1968, 392-430. Zbl0177.34201MR38 #4706
- [21] M. TSUJI, Potential theory in modern function theory, Maruzen, Tokyo 1959. Zbl0087.28401MR22 #5712
- [22] A. ZYGMUND, Sur les fonctions conjuguées, Fund. Math., 13 (1929), 284-303. Zbl55.0751.02JFM55.0751.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.