A value-distribution criterion for the class L log L and some related questions

M. Essen; D. F. Shea; C. S. Stanton

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 4, page 127-150
  • ISSN: 0373-0956

Abstract

top
We give a necessary and sufficient condition for an analytic function in H 1 to have real part in class L log L . This condition contains the classical one of Zygmund; other variants are also given.

How to cite

top

Essen, M., Shea, D. F., and Stanton, C. S.. "A value-distribution criterion for the class $L~{\rm log} L$ and some related questions." Annales de l'institut Fourier 35.4 (1985): 127-150. <http://eudml.org/doc/74691>.

@article{Essen1985,
abstract = {We give a necessary and sufficient condition for an analytic function in $H^ 1$ to have real part in class $L$$\log L$. This condition contains the classical one of Zygmund; other variants are also given.},
author = {Essen, M., Shea, D. F., Stanton, C. S.},
journal = {Annales de l'institut Fourier},
keywords = {analytic function in },
language = {eng},
number = {4},
pages = {127-150},
publisher = {Association des Annales de l'Institut Fourier},
title = {A value-distribution criterion for the class $L~\{\rm log\} L$ and some related questions},
url = {http://eudml.org/doc/74691},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Essen, M.
AU - Shea, D. F.
AU - Stanton, C. S.
TI - A value-distribution criterion for the class $L~{\rm log} L$ and some related questions
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 4
SP - 127
EP - 150
AB - We give a necessary and sufficient condition for an analytic function in $H^ 1$ to have real part in class $L$$\log L$. This condition contains the classical one of Zygmund; other variants are also given.
LA - eng
KW - analytic function in
UR - http://eudml.org/doc/74691
ER -

References

top
  1. [1] A. BAERNSTEIN, Integral means, univalent functions and circular symmetrization, Acta Math., 133 (1974), 133-169. Zbl0315.30021MR54 #5456
  2. [2] A. BAERNSTEIN, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J., 27 (1978), 833-852. Zbl0372.42007MR80g:30022
  3. [3] M. BENEDICKS, Positive harmonic functions vanishing on the boundary of certain domains in Rn, Ark. f. Mat., 18 (1980), 53-72. Zbl0455.31009MR82h:31004
  4. [4] D. L. BURKHOLDER, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math., 26 (1977), 182-205. Zbl0372.60112MR57 #14163
  5. [5] D. L. BURKHOLDER, Brownian Motion and the Hardy Spaces Hp, in Aspects of Contemporary Complex Analysis, editors Brannan and Clunie, Academic Press 1980, 97-118. Zbl0497.30028MR84a:30061
  6. [6] P. DUREN, Theory of Hp-spaces, Academic Press, 1970. Zbl0215.20203MR42 #3552
  7. [7] M. ESSÉN and D. F. SHEA, On some questions of uniqueness in the theory of symmetrization, Ann. Acad. Sci. Fennicae, Series A. I. Math., 4 (1978/1979), 311-340. Zbl0392.31001MR81d:30002
  8. [8] M. ESSÉN and D. F. SHEA, Some recent results on conjugate functions in the unit disk. Proc. of the 18th Scand. Congress of Mathematicians, 1980, Progress in Mathematics, Vol. 11, Birkhäuser. Zbl0462.30025
  9. [8a] M. ESSÉN and K. HALISTE, J. L. LEWIS and D.F. SHEA, Harmonic Majorization and classical analysis, J. London Math. Soc. (to appear). Zbl0558.30027
  10. [9] K. HALISTE, Estimates of harmonic measure, Ark. f. Mat., 6 (1965), 1-31. Zbl0178.13801MR34 #1547
  11. [10] K. HALISTE, Harmonic Majorization, Report No. 5 (1982), Department of Mathematics, University of Umeå, Sweden. 
  12. [11] W. K. HAYMAN, Meromorphic Functions, Oxford University Press, 1964. Zbl0115.06203MR29 #1337
  13. [12] W. K. HAYMAN and P. B. KENNEDY, Subharmonic Functions, vol. 1, Academic Press, 1976. Zbl0419.31001MR57 #665
  14. [13] W. K. HAYMAN and Ch. POMMERENKE, On analytic functions of bounded mean oscillation, Bull. London Math. Soc., 10 (1978), 219-224. Zbl0386.30011MR81g:30044
  15. [14] W. K. HAYMAN and A. WEITSMAN, On the coefficients of functions omitting values, Math. Proc. Cambridge Philos. Soc., 77 (1975), 119-137. Zbl0301.30011MR50 #13495
  16. [15] O. LEHTO, A majorant principle in the theory of functions, Math. Scand., 1 (1953), 5-17. Zbl0051.05906MR15,115d
  17. [16] R. NEVANLINNA, Analytic functions, Springer-Verlag, 1970. Zbl0199.12501
  18. [17] K. E. PETERSEN, Brownian motion, Hardy spaces and Bounded Mean Oscillation, London Math. Soc. Lecture Note Series, 28 (1977). Zbl0363.60004MR58 #31383
  19. [18] L. I. RONKIN, Introduction to the theory of entire functions of several complex variables, Transl. Math. Monographs, Vol. 44, Amer. Math. Soc., Providence, R. I. 1974. Zbl0286.32004MR49 #10901
  20. [19] C. S. STANTON, Riesz mass and growth problems for subharmonic functions, Thesis, University of Wisconsin 1982. 
  21. [20] W. STOLL, About entire and meromorphic functions of exponential type, Proc. of Symp. in Pure Math., Vol. XI, Amer. Math. Soc., Providence, R.I. 1968, 392-430. Zbl0177.34201MR38 #4706
  22. [21] M. TSUJI, Potential theory in modern function theory, Maruzen, Tokyo 1959. Zbl0087.28401MR22 #5712
  23. [22] A. ZYGMUND, Sur les fonctions conjuguées, Fund. Math., 13 (1929), 284-303. Zbl55.0751.02JFM55.0751.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.