Sharp inequalities for conjugate functions
Matts Essén[1]; Daniel F. Shea[2]; Charles S. Stanton[3]
- [1] University of Uppsala, Department of Mathematics, Box 480, 751 06 Uppsala (Suède)
- [2] University of Wisconsin, Department of Mathematics, Madison WI 53706-1313 (USA)
- [3] California State University at San Bernardino, Department of Mathematics, San Bernardino CA 92407 (USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 2, page 623-659
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEssén, Matts, Shea, Daniel F., and Stanton, Charles S.. "Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions." Annales de l’institut Fourier 52.2 (2002): 623-659. <http://eudml.org/doc/115989>.
@article{Essén2002,
abstract = {We give a method for constructing functions $\phi $ and $\psi $ for which $H(x,y) = \phi (x)-\psi (y)$ has a specified subharmonic minorant $h(x,y)$. By a theorem of B. Cole,
this procedure establishes integral mean inequalities for conjugate functions. We apply
this method to deduce sharp inequalities for conjugates of functions in the class
$L\log ^\{\alpha \}L$, for $-1\le \alpha <\infty $. In particular, the case $\alpha = 1$ yields an improvement of Pichorides’ form of Zygmund’s classical inequality for the
conjugates of functions in $L\log L$. We also apply the method to produce a new proof of
the M. Riesz’s inequality for functions in $L^p$, $(1<p<2)$, also with sharp
constant. All these inequalities are special cases of a general sharp inequality for
conjugate functions (cf. Theorem 6).},
affiliation = {University of Uppsala, Department of Mathematics, Box 480, 751 06 Uppsala (Suède); University of Wisconsin, Department of Mathematics, Madison WI 53706-1313 (USA); California State University at San Bernardino, Department of Mathematics, San Bernardino CA 92407 (USA)},
author = {Essén, Matts, Shea, Daniel F., Stanton, Charles S.},
journal = {Annales de l’institut Fourier},
keywords = {conjugate functions; norm estimates; minimal thinness; inequality},
language = {eng},
number = {2},
pages = {623-659},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sharp $L\;\{\rm log\}^\alpha L$ inequalities for conjugate functions},
url = {http://eudml.org/doc/115989},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Essén, Matts
AU - Shea, Daniel F.
AU - Stanton, Charles S.
TI - Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 623
EP - 659
AB - We give a method for constructing functions $\phi $ and $\psi $ for which $H(x,y) = \phi (x)-\psi (y)$ has a specified subharmonic minorant $h(x,y)$. By a theorem of B. Cole,
this procedure establishes integral mean inequalities for conjugate functions. We apply
this method to deduce sharp inequalities for conjugates of functions in the class
$L\log ^{\alpha }L$, for $-1\le \alpha <\infty $. In particular, the case $\alpha = 1$ yields an improvement of Pichorides’ form of Zygmund’s classical inequality for the
conjugates of functions in $L\log L$. We also apply the method to produce a new proof of
the M. Riesz’s inequality for functions in $L^p$, $(1<p<2)$, also with sharp
constant. All these inequalities are special cases of a general sharp inequality for
conjugate functions (cf. Theorem 6).
LA - eng
KW - conjugate functions; norm estimates; minimal thinness; inequality
UR - http://eudml.org/doc/115989
ER -
References
top- H. Aikawa, M. Essen, Potential Theory - Selected Topics, Springer Lecture Notes in Mathematics 1633 (1996) Zbl0865.31001MR1439503
- R. Banuelos, G. Wang, Sharp inequalities for martingales with applications to the Beurling--Ahlfors and Riesz transforms, Duke Math J. 80 (1995), 575-600 Zbl0853.60040MR1370109
- D. L. Burkholder, An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985), 474-478 Zbl0566.46014MR806015
- D. L. Burkholder, Explorations in Martingale Theory and its applications, Springer Lecture Notes in Mathematics 1464 (1989), 1-66 Zbl0771.60033MR1108183
- M. Essén, The Theorem, Springer Lecture Notes in Mathematics 467 (1975) Zbl0335.31001MR466587
- M. Essén, A superharmonic proof of the M. Riesz conjugate function theorem, Ark. Mat. 22 (1984), 241-249 Zbl0562.30002MR765412
- M. Essén, Harmonic majorization, harmonic measure and minimal thinness, Springer Lecture Notes in Mathematics 1275 (1987), 89-112 Zbl0671.31002MR922294
- M. Essén, Some best constant inequalities for conjugate functions, 103 (1992), 129-140, Birkhäuser-Verlag, Basel Zbl0771.42004
- M. Essén, D. F. Shea, and C. S. Stanton, A value-distribution criterion for the class and some related questions, Ann. Inst. Fourier, Grenoble 35 (1985), 127-150 Zbl0563.30025MR812321
- M. Essén, D. F. Shea, and C. S. Stanton, Some best constant inequalities of type, 3 (1994), 233-239, World Scientific Publishing Zbl0880.30005
- M. Essén, D. F. Shea, and C. S. Stanton, Near Integrability of the conjugate function, Complex Variables 37 (1998), 179-183 Zbl1054.42500MR1687876
- M. Essén, D. F. Shea, and C. S. Stanton, Best constant inequalities for conjugate functions, J. Comput. Appl. Math. 105 (1999), 257-264 Zbl0944.42009MR1690592
- M. Essén, D. F. Shea, and C. S. Stanton, Best constants in Zygmund's inequality for conjugate functions, A volume dedicated to Olli Martio on his 60th birthday 83 (2001), 73-80, Department of Mathematics, University of Jyväskylä Zbl1051.42007
- T. W. Gamelin, Uniform algebras and Jensen measure, 32 (1978), Cambridge University Press Zbl0418.46042MR521440
- W. K. Hayman, P. B. Kennedy, Subharmonic functions I, (1976), Academic Press Zbl0419.31001
- T. Iwaniec, G. Martin, Riesz transforms and related singular integrals, J. Reine Angew. Math. 473 (1996), 25-57 Zbl0847.42015MR1390681
- T. Iwaniec, A. Lutoborskii, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. 125 (1993), 25-79 Zbl0793.58002MR1241286
- S. K. Pichorides, On the best value of the constants in the theorems of M. Riesz, Zygmund, and Kolmogorov, Studia Math. 44 (1972), 165-179 Zbl0238.42007MR312140
- M. Riesz, Sur les fonctions conjugées, Math Z. 27 (1927), 218-244 Zbl53.0259.02MR1544909
- P. Stein, On a theorem of M. Riesz, J. London Math. Soc. 8 (1933), 242-247 Zbl0007.35003
- I. E. Verbitsky, An estimate of the norm in a Hardy space in terms of the norms of its real and imaginary parts, 54 (1980), 16-20 Zbl0557.30027
- A. Zygmund, Trigonometric Series, (1968), Cambridge University Press Zbl0085.05601MR236587
- A. Zygmund, Sur les fonctions conjugées, Fund. Math. 13 (1929), 284-303 Zbl55.0751.02
- I. E. Verbitsky, An estimate of the norm in a Hardy space in terms of the norms of its real and imaginary parts, Amer. Math. Soc. Transl. (2) 124 (1984), 11-15 Zbl0557.30027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.