Sharp L log α L inequalities for conjugate functions

Matts Essén[1]; Daniel F. Shea[2]; Charles S. Stanton[3]

  • [1] University of Uppsala, Department of Mathematics, Box 480, 751 06 Uppsala (Suède)
  • [2] University of Wisconsin, Department of Mathematics, Madison WI 53706-1313 (USA)
  • [3] California State University at San Bernardino, Department of Mathematics, San Bernardino CA 92407 (USA)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 2, page 623-659
  • ISSN: 0373-0956

Abstract

top
We give a method for constructing functions φ and ψ for which H ( x , y ) = φ ( x ) - ψ ( y ) has a specified subharmonic minorant h ( x , y ) . By a theorem of B. Cole, this procedure establishes integral mean inequalities for conjugate functions. We apply this method to deduce sharp inequalities for conjugates of functions in the class L log α L , for - 1 α < . In particular, the case α = 1 yields an improvement of Pichorides’ form of Zygmund’s classical inequality for the conjugates of functions in L log L . We also apply the method to produce a new proof of the M. Riesz’s inequality for functions in L p , ( 1 < p < 2 ) , also with sharp constant. All these inequalities are special cases of a general sharp inequality for conjugate functions (cf. Theorem 6).

How to cite

top

Essén, Matts, Shea, Daniel F., and Stanton, Charles S.. "Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions." Annales de l’institut Fourier 52.2 (2002): 623-659. <http://eudml.org/doc/115989>.

@article{Essén2002,
abstract = {We give a method for constructing functions $\phi $ and $\psi $ for which $H(x,y) = \phi (x)-\psi (y)$ has a specified subharmonic minorant $h(x,y)$. By a theorem of B. Cole, this procedure establishes integral mean inequalities for conjugate functions. We apply this method to deduce sharp inequalities for conjugates of functions in the class $L\log ^\{\alpha \}L$, for $-1\le \alpha &lt;\infty $. In particular, the case $\alpha = 1$ yields an improvement of Pichorides’ form of Zygmund’s classical inequality for the conjugates of functions in $L\log L$. We also apply the method to produce a new proof of the M. Riesz’s inequality for functions in $L^p$, $(1&lt;p&lt;2)$, also with sharp constant. All these inequalities are special cases of a general sharp inequality for conjugate functions (cf. Theorem 6).},
affiliation = {University of Uppsala, Department of Mathematics, Box 480, 751 06 Uppsala (Suède); University of Wisconsin, Department of Mathematics, Madison WI 53706-1313 (USA); California State University at San Bernardino, Department of Mathematics, San Bernardino CA 92407 (USA)},
author = {Essén, Matts, Shea, Daniel F., Stanton, Charles S.},
journal = {Annales de l’institut Fourier},
keywords = {conjugate functions; norm estimates; minimal thinness; inequality},
language = {eng},
number = {2},
pages = {623-659},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sharp $L\;\{\rm log\}^\alpha L$ inequalities for conjugate functions},
url = {http://eudml.org/doc/115989},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Essén, Matts
AU - Shea, Daniel F.
AU - Stanton, Charles S.
TI - Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 623
EP - 659
AB - We give a method for constructing functions $\phi $ and $\psi $ for which $H(x,y) = \phi (x)-\psi (y)$ has a specified subharmonic minorant $h(x,y)$. By a theorem of B. Cole, this procedure establishes integral mean inequalities for conjugate functions. We apply this method to deduce sharp inequalities for conjugates of functions in the class $L\log ^{\alpha }L$, for $-1\le \alpha &lt;\infty $. In particular, the case $\alpha = 1$ yields an improvement of Pichorides’ form of Zygmund’s classical inequality for the conjugates of functions in $L\log L$. We also apply the method to produce a new proof of the M. Riesz’s inequality for functions in $L^p$, $(1&lt;p&lt;2)$, also with sharp constant. All these inequalities are special cases of a general sharp inequality for conjugate functions (cf. Theorem 6).
LA - eng
KW - conjugate functions; norm estimates; minimal thinness; inequality
UR - http://eudml.org/doc/115989
ER -

References

top
  1. H. Aikawa, M. Essen, Potential Theory - Selected Topics, Springer Lecture Notes in Mathematics 1633 (1996) Zbl0865.31001MR1439503
  2. R. Banuelos, G. Wang, Sharp inequalities for martingales with applications to the Beurling--Ahlfors and Riesz transforms, Duke Math J. 80 (1995), 575-600 Zbl0853.60040MR1370109
  3. D. L. Burkholder, An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985), 474-478 Zbl0566.46014MR806015
  4. D. L. Burkholder, Explorations in Martingale Theory and its applications, Springer Lecture Notes in Mathematics 1464 (1989), 1-66 Zbl0771.60033MR1108183
  5. M. Essén, The cos π λ Theorem, Springer Lecture Notes in Mathematics 467 (1975) Zbl0335.31001MR466587
  6. M. Essén, A superharmonic proof of the M. Riesz conjugate function theorem, Ark. Mat. 22 (1984), 241-249 Zbl0562.30002MR765412
  7. M. Essén, Harmonic majorization, harmonic measure and minimal thinness, Springer Lecture Notes in Mathematics 1275 (1987), 89-112 Zbl0671.31002MR922294
  8. M. Essén, Some best constant inequalities for conjugate functions, 103 (1992), 129-140, Birkhäuser-Verlag, Basel Zbl0771.42004
  9. M. Essén, D. F. Shea, and C. S. Stanton, A value-distribution criterion for the class L log L and some related questions, Ann. Inst. Fourier, Grenoble 35 (1985), 127-150 Zbl0563.30025MR812321
  10. M. Essén, D. F. Shea, and C. S. Stanton, Some best constant inequalities of L ( log L ) α type, 3 (1994), 233-239, World Scientific Publishing Zbl0880.30005
  11. M. Essén, D. F. Shea, and C. S. Stanton, Near Integrability of the conjugate function, Complex Variables 37 (1998), 179-183 Zbl1054.42500MR1687876
  12. M. Essén, D. F. Shea, and C. S. Stanton, Best constant inequalities for conjugate functions, J. Comput. Appl. Math. 105 (1999), 257-264 Zbl0944.42009MR1690592
  13. M. Essén, D. F. Shea, and C. S. Stanton, Best constants in Zygmund's inequality for conjugate functions, A volume dedicated to Olli Martio on his 60th birthday 83 (2001), 73-80, Department of Mathematics, University of Jyväskylä Zbl1051.42007
  14. T. W. Gamelin, Uniform algebras and Jensen measure, 32 (1978), Cambridge University Press Zbl0418.46042MR521440
  15. W. K. Hayman, P. B. Kennedy, Subharmonic functions I, (1976), Academic Press Zbl0419.31001
  16. T. Iwaniec, G. Martin, Riesz transforms and related singular integrals, J. Reine Angew. Math. 473 (1996), 25-57 Zbl0847.42015MR1390681
  17. T. Iwaniec, A. Lutoborskii, Integral estimates for null Lagrangians, Arch. Rational Mech. Anal. 125 (1993), 25-79 Zbl0793.58002MR1241286
  18. S. K. Pichorides, On the best value of the constants in the theorems of M. Riesz, Zygmund, and Kolmogorov, Studia Math. 44 (1972), 165-179 Zbl0238.42007MR312140
  19. M. Riesz, Sur les fonctions conjugées, Math Z. 27 (1927), 218-244 Zbl53.0259.02MR1544909
  20. P. Stein, On a theorem of M. Riesz, J. London Math. Soc. 8 (1933), 242-247 Zbl0007.35003
  21. I. E. Verbitsky, An estimate of the norm in a Hardy space in terms of the norms of its real and imaginary parts, 54 (1980), 16-20 Zbl0557.30027
  22. A. Zygmund, Trigonometric Series, (1968), Cambridge University Press Zbl0085.05601MR236587
  23. A. Zygmund, Sur les fonctions conjugées, Fund. Math. 13 (1929), 284-303 Zbl55.0751.02
  24. I. E. Verbitsky, An estimate of the norm in a Hardy space in terms of the norms of its real and imaginary parts, Amer. Math. Soc. Transl. (2) 124 (1984), 11-15 Zbl0557.30027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.