Global stability for diagrams of differentiable applications
Luis Antonio Favaro; C. M. Mendes
Annales de l'institut Fourier (1986)
- Volume: 36, Issue: 1, page 133-153
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFavaro, Luis Antonio, and Mendes, C. M.. "Global stability for diagrams of differentiable applications." Annales de l'institut Fourier 36.1 (1986): 133-153. <http://eudml.org/doc/74701>.
@article{Favaro1986,
abstract = {In this paper, we give some examples which point to the non-existence of $C^\infty $-global stable diagrams $R\mathrel \{\mathop \{\hspace\{0.0pt\}\leftarrow \}\limits ^\{g\}\}M \mathrel \{\mathop \{\hspace\{0.0pt\}\rightarrow \}\limits ^\{f\}\}R$, $M$ compact. If $\Phi $ : $M\rightarrow Q$ is fixed we define the $\Phi $-equivalence for maps $f: M\rightarrow P$ and the corresponding $\Phi $-stability. The globalization procedure works and we can compare the $\Phi $-stability, $\Phi $-infinitesimal stability, and $\Phi $-homotopical stability. Also we give some characterization theorems for lower dimensions.},
author = {Favaro, Luis Antonio, Mendes, C. M.},
journal = {Annales de l'institut Fourier},
keywords = {stability of diagrams; unfoldings; singularities of differentiable mappings},
language = {eng},
number = {1},
pages = {133-153},
publisher = {Association des Annales de l'Institut Fourier},
title = {Global stability for diagrams of differentiable applications},
url = {http://eudml.org/doc/74701},
volume = {36},
year = {1986},
}
TY - JOUR
AU - Favaro, Luis Antonio
AU - Mendes, C. M.
TI - Global stability for diagrams of differentiable applications
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 1
SP - 133
EP - 153
AB - In this paper, we give some examples which point to the non-existence of $C^\infty $-global stable diagrams $R\mathrel {\mathop {\hspace{0.0pt}\leftarrow }\limits ^{g}}M \mathrel {\mathop {\hspace{0.0pt}\rightarrow }\limits ^{f}}R$, $M$ compact. If $\Phi $ : $M\rightarrow Q$ is fixed we define the $\Phi $-equivalence for maps $f: M\rightarrow P$ and the corresponding $\Phi $-stability. The globalization procedure works and we can compare the $\Phi $-stability, $\Phi $-infinitesimal stability, and $\Phi $-homotopical stability. Also we give some characterization theorems for lower dimensions.
LA - eng
KW - stability of diagrams; unfoldings; singularities of differentiable mappings
UR - http://eudml.org/doc/74701
ER -
References
top- [1] M.A. BUCHNER, Stability of the cut locus in dimensions less than or equal to 6, Inventiones Math., 43 (1977), 199-231. Zbl0365.58010MR58 #2866
- [2] J.W. BRUCE, On singularities, envelopes and elementary differential geometry, Math. Proc. Camb. Phil. Soc., (1981). Zbl0454.58002MR82b:58018
- [3] M.J.D. CARNEIRO, On the Envelope Theory, PhD Thesis, Princeton, (1980).
- [4] J.P. DUFOUR, Déploiements de cascades d'applications différentiables, C.R.A.S., Paris, 281 (1975), A 31-34. Zbl0317.58005MR52 #6775
- [5] J.P. DUFOUR, Diagrammes d'applications différentiables, Thèse Université des Sciences et Techniques du Languedoc, (1979). Zbl0354.58011
- [6] J.P. DUFOUR, Stabilité simultanée de deux fonctions, Ann. Inst. Fourier, Grenoble, 29, 1 (1979), 263-282. Zbl0364.58007MR80f:58010
- [7] L.A. FAVARO and C.M. MENDES, Singularidades e Envoltorias, Comunicaçao, IV Escola de Geometria Diferencial, IMPA, Rio de Janeiro, (1982).
- [8] M. GOLUBITSKY and V. GUILLEMIN, Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Springer-Verlag, Vol. 14 (1973). Zbl0294.58004MR49 #6269
- [9] J.N. MATHER, Stability of C∞ mappings II : Infinitesimal, stability implies stability, Annals of Math., Vol. 89, n° 2 (1969). Zbl0177.26002MR41 #4582
- [10] J. MARTINET, Déploiements versels des applications différentiables et classification des applications stables, Lectures Notes in Mathematics, 535 (1975). Zbl0362.58004
- [11] C.M. MENDES, ψ-Estabilidade, Tese de Doutorado, ICMSC-USP, (1981).
- [12] R. THOM, Sur la théorie des enveloppes, J. Math. Pure et Appl., Tome XLI, Fac. 2 (1962). Zbl0105.16102MR25 #4454
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.