Vanishing theorems for compact hessian manifolds

Hirohiko Shima

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 3, page 183-205
  • ISSN: 0373-0956

Abstract

top
A manifold is said to be Hessian if it admits a flat affine connection D and a Riemannian metric g such that g = D 2 u where u is a local function. We study cohomology for Hessian manifolds, and prove a duality theorem and vanishing theorems.

How to cite

top

Shima, Hirohiko. "Vanishing theorems for compact hessian manifolds." Annales de l'institut Fourier 36.3 (1986): 183-205. <http://eudml.org/doc/74723>.

@article{Shima1986,
abstract = {A manifold is said to be Hessian if it admits a flat affine connection $D$ and a Riemannian metric $g$ such that $g=D^ 2u$ where $u$ is a local function. We study cohomology for Hessian manifolds, and prove a duality theorem and vanishing theorems.},
author = {Shima, Hirohiko},
journal = {Annales de l'institut Fourier},
keywords = {cohomology for Hessian manifolds; duality theorem; vanishing theorems},
language = {eng},
number = {3},
pages = {183-205},
publisher = {Association des Annales de l'Institut Fourier},
title = {Vanishing theorems for compact hessian manifolds},
url = {http://eudml.org/doc/74723},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Shima, Hirohiko
TI - Vanishing theorems for compact hessian manifolds
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 3
SP - 183
EP - 205
AB - A manifold is said to be Hessian if it admits a flat affine connection $D$ and a Riemannian metric $g$ such that $g=D^ 2u$ where $u$ is a local function. We study cohomology for Hessian manifolds, and prove a duality theorem and vanishing theorems.
LA - eng
KW - cohomology for Hessian manifolds; duality theorem; vanishing theorems
UR - http://eudml.org/doc/74723
ER -

References

top
  1. [1] Y. AKIZUKI and S. NAKANO, Note on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Japan Acad., 30 (1954), 266-272. Zbl0059.14701MR16,619a
  2. [2] S.Y. CHENG and S.T. YAU, The real Monge-Ampère equation and affine flat structures, Proceedings of the 1980 Beijing symposium of differential geometry and differential equations, Science Press, Beijing, China, 1982, Gordon and Breach, Science Publishers, Inc., New York, 339-370. Zbl0517.35020MR85c:53103
  3. [3] K. KODAIRA, On cohomology groups of compact analytic varieties with coefficients in some analytic faisceaux, Proc. Nat. Acad. Sci., U.S.A., 39 (1953), 865-868. Zbl0051.14502MR16,74b
  4. [4] K. KODAIRA, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci., U.S.A., 39 (1953), 1268-1273. Zbl0053.11701MR16,618b
  5. [5] J.L. KOSZUL, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961), 515-533. Zbl0144.34002MR26 #3090
  6. [6] J.L. KOSZUL, Variétés localement plates et convexité, Osaka J. Math., 2 (1965), 285-290. Zbl0173.50001MR33 #4849
  7. [7] J.L. KOSZUL, Déformations de connexions localement plates, Ann. Inst. Fourier, Grenoble, 18-1 (1968), 103-114. Zbl0167.50103MR39 #886
  8. [8] J. MORROW and K. KODAIRA, Complex manifolds, Holt, Rinehart and Winston, Inc., 1971. Zbl0325.32001MR46 #2080
  9. [9] J.P. SERRE, Une théorème de dualité, Comm. Math. Helv., 29 (1955), 9-26. Zbl0067.16101MR16,736d
  10. [10] H. SHIMA, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math., 13 (1976), 213-229. Zbl0332.53032MR54 #1131
  11. [11] H. SHIMA, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan, 29 (1977), 581-589. Zbl0349.53036MR56 #9462
  12. [12] H. SHIMA, Compact locally Hessian manifolds, Osaka J. Math., 15 (1978), 509-513. Zbl0415.53032MR80e:53054
  13. [13] H. SHIMA, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble, 30-3 (1980), 91-128. Zbl0424.53023MR82a:53054
  14. [14] H. SHIMA, Hessian manifolds and convexity, in Manifolds, and Lie groups, Papers in honor of Y. Matsushima, Progress in Mathematics, vol. 14, Birkhäuser, Boston, Basel, Stuttgart, 1981, 385-392. Zbl0481.53038MR83h:53066
  15. [15] K. YAGI, On Hessian structures on an affine manifold, in Manifolds and Lie groups. Papers in honor of Y. Matsushima, Progress in Mathematics, vol. 14, Birkhäuser, Boston, Basel, Stuttgart, 1981, 449-459. Zbl0495.53011MR83h:53067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.