Vanishing theorems for compact hessian manifolds
Annales de l'institut Fourier (1986)
- Volume: 36, Issue: 3, page 183-205
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topShima, Hirohiko. "Vanishing theorems for compact hessian manifolds." Annales de l'institut Fourier 36.3 (1986): 183-205. <http://eudml.org/doc/74723>.
@article{Shima1986,
abstract = {A manifold is said to be Hessian if it admits a flat affine connection $D$ and a Riemannian metric $g$ such that $g=D^ 2u$ where $u$ is a local function. We study cohomology for Hessian manifolds, and prove a duality theorem and vanishing theorems.},
author = {Shima, Hirohiko},
journal = {Annales de l'institut Fourier},
keywords = {cohomology for Hessian manifolds; duality theorem; vanishing theorems},
language = {eng},
number = {3},
pages = {183-205},
publisher = {Association des Annales de l'Institut Fourier},
title = {Vanishing theorems for compact hessian manifolds},
url = {http://eudml.org/doc/74723},
volume = {36},
year = {1986},
}
TY - JOUR
AU - Shima, Hirohiko
TI - Vanishing theorems for compact hessian manifolds
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 3
SP - 183
EP - 205
AB - A manifold is said to be Hessian if it admits a flat affine connection $D$ and a Riemannian metric $g$ such that $g=D^ 2u$ where $u$ is a local function. We study cohomology for Hessian manifolds, and prove a duality theorem and vanishing theorems.
LA - eng
KW - cohomology for Hessian manifolds; duality theorem; vanishing theorems
UR - http://eudml.org/doc/74723
ER -
References
top- [1] Y. AKIZUKI and S. NAKANO, Note on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Japan Acad., 30 (1954), 266-272. Zbl0059.14701MR16,619a
- [2] S.Y. CHENG and S.T. YAU, The real Monge-Ampère equation and affine flat structures, Proceedings of the 1980 Beijing symposium of differential geometry and differential equations, Science Press, Beijing, China, 1982, Gordon and Breach, Science Publishers, Inc., New York, 339-370. Zbl0517.35020MR85c:53103
- [3] K. KODAIRA, On cohomology groups of compact analytic varieties with coefficients in some analytic faisceaux, Proc. Nat. Acad. Sci., U.S.A., 39 (1953), 865-868. Zbl0051.14502MR16,74b
- [4] K. KODAIRA, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci., U.S.A., 39 (1953), 1268-1273. Zbl0053.11701MR16,618b
- [5] J.L. KOSZUL, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961), 515-533. Zbl0144.34002MR26 #3090
- [6] J.L. KOSZUL, Variétés localement plates et convexité, Osaka J. Math., 2 (1965), 285-290. Zbl0173.50001MR33 #4849
- [7] J.L. KOSZUL, Déformations de connexions localement plates, Ann. Inst. Fourier, Grenoble, 18-1 (1968), 103-114. Zbl0167.50103MR39 #886
- [8] J. MORROW and K. KODAIRA, Complex manifolds, Holt, Rinehart and Winston, Inc., 1971. Zbl0325.32001MR46 #2080
- [9] J.P. SERRE, Une théorème de dualité, Comm. Math. Helv., 29 (1955), 9-26. Zbl0067.16101MR16,736d
- [10] H. SHIMA, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math., 13 (1976), 213-229. Zbl0332.53032MR54 #1131
- [11] H. SHIMA, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan, 29 (1977), 581-589. Zbl0349.53036MR56 #9462
- [12] H. SHIMA, Compact locally Hessian manifolds, Osaka J. Math., 15 (1978), 509-513. Zbl0415.53032MR80e:53054
- [13] H. SHIMA, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble, 30-3 (1980), 91-128. Zbl0424.53023MR82a:53054
- [14] H. SHIMA, Hessian manifolds and convexity, in Manifolds, and Lie groups, Papers in honor of Y. Matsushima, Progress in Mathematics, vol. 14, Birkhäuser, Boston, Basel, Stuttgart, 1981, 385-392. Zbl0481.53038MR83h:53066
- [15] K. YAGI, On Hessian structures on an affine manifold, in Manifolds and Lie groups. Papers in honor of Y. Matsushima, Progress in Mathematics, vol. 14, Birkhäuser, Boston, Basel, Stuttgart, 1981, 449-459. Zbl0495.53011MR83h:53067
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.