Homogeneous hessian manifolds
Annales de l'institut Fourier (1980)
- Volume: 30, Issue: 3, page 91-128
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topShima, Hirohiko. "Homogeneous hessian manifolds." Annales de l'institut Fourier 30.3 (1980): 91-128. <http://eudml.org/doc/74467>.
@article{Shima1980,
abstract = {A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form $g_\{ij\}=\{\partial ^2\Phi \over \partial x^i\partial x^j\}$ where $\Phi $ is a $C^\infty $-function and $\lbrace x^1,\ldots ,x^n\rbrace $ is an affine local coordinate system. Let $M$ be a Hessian manifold. We show that if $M$ is homogeneous, the universal covering manifold of $M$ is a convex domain in $\{\bf R\}^n$ and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of $\{\bf R\}^n$.},
author = {Shima, Hirohiko},
journal = {Annales de l'institut Fourier},
keywords = {homogeneous hessian manifolds; affine manifold; universal covering manifold; base space},
language = {eng},
number = {3},
pages = {91-128},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homogeneous hessian manifolds},
url = {http://eudml.org/doc/74467},
volume = {30},
year = {1980},
}
TY - JOUR
AU - Shima, Hirohiko
TI - Homogeneous hessian manifolds
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 3
SP - 91
EP - 128
AB - A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form $g_{ij}={\partial ^2\Phi \over \partial x^i\partial x^j}$ where $\Phi $ is a $C^\infty $-function and $\lbrace x^1,\ldots ,x^n\rbrace $ is an affine local coordinate system. Let $M$ be a Hessian manifold. We show that if $M$ is homogeneous, the universal covering manifold of $M$ is a convex domain in ${\bf R}^n$ and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of ${\bf R}^n$.
LA - eng
KW - homogeneous hessian manifolds; affine manifold; universal covering manifold; base space
UR - http://eudml.org/doc/74467
ER -
References
top- [1] S.G. GINDIKIN, I.I. PJATECKII-SAPIRO and E.B. VINBERG, Homogeneous Kähler manifolds, in “Geometry of Homogeneous Bounded Domains”, Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87. Zbl0183.35401
- [2] P. DOMBROWSKI, On the geometry of the tangent bundles, J. Reine Angew. Math., 210 (1962), 73-88. Zbl0105.16002MR25 #4463
- [3] M. GOTO, Faithful representations of Lie groups I, Math. Japon., 1 (1948), 1-13. Zbl0041.36001
- [4] J. HELMSTETTER, Doctorat de 3e cycle “Radical et groupe formel d'une algèbre symétrique à gauche” novembre 1975, Grenoble.
- [5] S. KOBAYASHI, Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. of Tokyo, IA 24 (1977), 129-135. Zbl0367.53002MR56 #3361
- [6] J.L. KOSZUL, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961), 515-533. Zbl0144.34002MR26 #3090
- [7] J.L. KOSZUL, Variétés localement plates et convexité, Osaka J. Math., 2 (1965), 285-290. Zbl0173.50001MR33 #4849
- [8] H. SHIMA, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math., 13 (1976), 213-229. Zbl0332.53032MR54 #1131
- [9] H. SHIMA, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan, 29 (1977), 581-589. Zbl0349.53036MR56 #9462
- [10] H. SHIMA, Compact locally Hessian manifolds, Osaka J. Math., 15 (1978) 509-513. Zbl0415.53032MR80e:53054
- [11] J. VEY, Une notion d'hyperbolicité sur les variétés localement plates, C.R. Acad. Sci. Paris, 266 (1968), 622-624. Zbl0155.30602MR38 #5131
- [12] E.B. VINBERG, The Morozov-Borel theorem for real Lie groups, Soviet Math. Dokl., 2 (1961), 1416-1419. Zbl0112.02505MR26 #252
- [13] E.B. VINBERG, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403. Zbl0138.43301
- [14] E.B. VINBERG and S.G. GINDIKIN, Kaehlerian manifolds admitting a transitive solvable automorphism group, Math. Sb., 75 (116) (1967), 333-351. Zbl0172.37803
- [15] K. YOSHIDA, A theorem concerning the semi-simple Lie groups, Tohoku Math. J., 43 (Part II) (1937), 81-84. Zbl0018.29802
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.