Pseudo-immersions

Henri Joris; Emmanuel Preissmann

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 2, page 195-221
  • ISSN: 0373-0956

Abstract

top
Let f : ( R m , 0 ) ( R n , 0 ) be a 𝒞 -germ. f is said to be a pseudo-immersion (noted f Ψ n , m ) if for continuous germ g : ( R , 0 ) ( R m , 0 ) , f g 𝒞 implies g 𝒞 . Ψ n , 1 , is completely determined, for each natural n , Ψ 2 , 2 is shown to coincide with Diff 2 . If K = R or C and g : K K is such that g 2 and g 3 are in 𝒞 . If K = H (field of Hamiltonians), a counter-exemple shows that this implication is no more valid.

How to cite

top

Joris, Henri, and Preissmann, Emmanuel. "Pseudo-immersions." Annales de l'institut Fourier 37.2 (1987): 195-221. <http://eudml.org/doc/74751>.

@article{Joris1987,
abstract = {Si $f$ est un germe $\{\cal C\}^\infty $ de $(\{\bf R\}^n,0)$, on dira que $f$ est une pseudo-immersion (on notera $f\in \Psi _\{n,m\}$) si tous les germes continus $g$ de $(\{\bf R\},0)$ dans $(\{\bf R\}^m,0)$, tels que $f\circ g\in \{\cal C\}^\infty $ sont eux-mêmes $\{\cal C\}^\infty $. On détermine complètement $\Psi _\{n,1\}$, et on montre que $\Psi _\{2,2\}=\{\rm Diff\}_2$. Par ailleurs, si $\{\bf K\}=\{\bf R\}$ ou $\{\bf C\}$ et si $g$ est une application de $\{\bf K\}$ dans $\{\bf K\}$ telle que $g^2$ et $g^3$ sont $\{\cal C\}^\infty $, alors $g$ est aussi $\{\cal C\}^\infty $. Si $\{\bf K\}=\{\bf H\}$ (corps des hamiloniens) alors cette implication n’est plus vraie.},
author = {Joris, Henri, Preissmann, Emmanuel},
journal = {Annales de l'institut Fourier},
keywords = {immersions; pseudo-immersions; differentiability conditions; singularities},
language = {fre},
number = {2},
pages = {195-221},
publisher = {Association des Annales de l'Institut Fourier},
title = {Pseudo-immersions},
url = {http://eudml.org/doc/74751},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Joris, Henri
AU - Preissmann, Emmanuel
TI - Pseudo-immersions
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 2
SP - 195
EP - 221
AB - Si $f$ est un germe ${\cal C}^\infty $ de $({\bf R}^n,0)$, on dira que $f$ est une pseudo-immersion (on notera $f\in \Psi _{n,m}$) si tous les germes continus $g$ de $({\bf R},0)$ dans $({\bf R}^m,0)$, tels que $f\circ g\in {\cal C}^\infty $ sont eux-mêmes ${\cal C}^\infty $. On détermine complètement $\Psi _{n,1}$, et on montre que $\Psi _{2,2}={\rm Diff}_2$. Par ailleurs, si ${\bf K}={\bf R}$ ou ${\bf C}$ et si $g$ est une application de ${\bf K}$ dans ${\bf K}$ telle que $g^2$ et $g^3$ sont ${\cal C}^\infty $, alors $g$ est aussi ${\cal C}^\infty $. Si ${\bf K}={\bf H}$ (corps des hamiloniens) alors cette implication n’est plus vraie.
LA - fre
KW - immersions; pseudo-immersions; differentiability conditions; singularities
UR - http://eudml.org/doc/74751
ER -

References

top
  1. [1] R. NARASIMHAN, Analysis on Real and Complex Manifolds, Second edition, Masson, Paris, 1973. 
  2. [2] H. JORIS, Une C∞-application non-immersive qui possède la propriété universelle des immersions, Archiv der Mathematik, 39 (1982), 269-277. Zbl0504.58007MR84f:58017
  3. [3] J. BOMAN, Differentiability of a function and of its compositions with functions of one variable, Math. Scand., 20 (1967), 249-268. Zbl0182.38302MR38 #6009
  4. [4] J. DUNCAN, S. G. KRANTZ, H. R. PARKS, Non-linear Conditions for Differentiability of Functions, Journal d'Analyse Math., 45 (1985), 46-68. Zbl0632.58008MR87i:26027
  5. [5] C. G. GIBSON, Singular Points of Smooth Mappings, Pitman, London, 1979. Zbl0426.58001MR80j:58011
  6. [6] S. S. ABHYANKAR, Lectures on Expansion Techniques in Algebraic Geometry, Tata Institute, Bombay, 1977. Zbl0818.14001MR80m:14016
  7. [7] O. ZARISKI, P. SAMUEL, Commutative Algebra, Vol. II, Van Nostrand, Princeton 1960. Zbl0121.27801MR22 #11006
  8. [8] N. BOURBAKI, Algèbre Commutative, Chap. 7, Hermann, Paris, 1965. Zbl0141.03501
  9. [9] R. NARASIMHAN, Complex Analysis in One Variable, Birkhäuser, Boston, 1985. Zbl0561.30001MR87h:30001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.