On classical invariant theory and binary cubics

Gerald W. Schwarz

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 3, page 191-216
  • ISSN: 0373-0956

Abstract

top
Let G be a reductive complex algebraic group, and let C [ m V ] G denote the algebra of invariant polynomial functions on the direct sum of m copies of the representations space V of G . There is a smallest integer n = n ( V ) such that generators and relations of C [ m V ] G can be obtained from those of C [ n V ] G by polarization and restitution for all m > n . We bound and the degrees of generators and relations of C [ n V ] G , extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.

How to cite

top

Schwarz, Gerald W.. "On classical invariant theory and binary cubics." Annales de l'institut Fourier 37.3 (1987): 191-216. <http://eudml.org/doc/74763>.

@article{Schwarz1987,
abstract = {Let $G$ be a reductive complex algebraic group, and let $C[mV]^G$ denote the algebra of invariant polynomial functions on the direct sum of $m$ copies of the representations space $V$ of $G$. There is a smallest integer $n=n(V)$ such that generators and relations of $C[mV]^G$ can be obtained from those of $C[nV]^G$ by polarization and restitution for all $m&gt;n$. We bound and the degrees of generators and relations of $C[nV]^G$, extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.},
author = {Schwarz, Gerald W.},
journal = {Annales de l'institut Fourier},
keywords = {reductive complex algebraic group; algebra of invariant polynomial functions; invariant theory of binary cubics},
language = {eng},
number = {3},
pages = {191-216},
publisher = {Association des Annales de l'Institut Fourier},
title = {On classical invariant theory and binary cubics},
url = {http://eudml.org/doc/74763},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Schwarz, Gerald W.
TI - On classical invariant theory and binary cubics
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 3
SP - 191
EP - 216
AB - Let $G$ be a reductive complex algebraic group, and let $C[mV]^G$ denote the algebra of invariant polynomial functions on the direct sum of $m$ copies of the representations space $V$ of $G$. There is a smallest integer $n=n(V)$ such that generators and relations of $C[mV]^G$ can be obtained from those of $C[nV]^G$ by polarization and restitution for all $m&gt;n$. We bound and the degrees of generators and relations of $C[nV]^G$, extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.
LA - eng
KW - reductive complex algebraic group; algebra of invariant polynomial functions; invariant theory of binary cubics
UR - http://eudml.org/doc/74763
ER -

References

top
  1. [1] J.-F. BOUTOT, Singularités rationnelles et quotients par les groupes réductifs, Inv. Math., 88 (1987), 65-68. Zbl0619.14029MR88a:14005
  2. [2] J. GRACE and A. YOUNG, The Algebra of Invariants, Cambridge University Press, Cambridge, 1903. Zbl34.0114.01JFM34.0114.01
  3. [3] M. HOCHSTER and J. ROBERTS, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math., 13 (1974), 115-175. Zbl0289.14010MR50 #311
  4. [4] F. KNOP, Über die Glattheit von Quotientenabbildungen, Manuscripta Math., 56 (1986), 419-427. Zbl0585.14033MR88f:14041
  5. [5] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Viehweg, Braunschweig, 1984. Zbl0569.14003MR86j:14006
  6. [6] M. KRÄMER, Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen, Comm. in Alg., 3 (1975), 691-737. Zbl0309.22013
  7. [7] S. LANG, Algebra, Addison-Wesley, Reading, 1965. Zbl0193.34701MR33 #5416
  8. [8] D. LUNA and R. RICHARDSON, A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496. Zbl0444.14010MR80k:14049
  9. [9] I.G. MAC DONALD, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979. Zbl0487.20007MR84g:05003
  10. [10] C. PROCESI, A Primer of Invariant Theory, Brandeis Lecture Notes 1, Department of Mathematics, Brandeis University, 1982. 
  11. [11] G. SCHWARZ, Representations of simple Lie groups with regular rings of invariants, Inv. Math., 49 (1978), 167-191. Zbl0391.20032MR80m:14032
  12. [12] G. SCHWARZ, Representations of simple Lie groups with a free module of covariants, Inv. Math., 50 (1978), 1-12. Zbl0391.20033MR80c:14008
  13. [13] G. SCHWARZ, Invariant theory of G2, Bull. Amer. Math. Soc., 9 (1983), 335-338. Zbl0531.14007MR85c:20031
  14. [14] G. SCHWARZ, Invariant theory of G2 and Spin7, to appear. 
  15. [15] R.P. STANLEY, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc., 1 (1979), 475-511. Zbl0497.20002MR81a:20015
  16. [16] R.P. STANLEY, Combinatorics and invariant theory, Proc. Symposia Pure Math., Vol. 34, Amer. Math. Soc., Providence, R.I., 1979, 345-355. Zbl0411.22006MR80e:15020
  17. [17] F. VON GALL, Das vollständige Formensystem dreier cubischen binären Formen, Math. Ann., 45 (1894), 207-234. Zbl25.0186.02JFM25.0186.02
  18. [18] Th. VUST, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, 26-1 (1976), 1-31. Zbl0314.20035MR53 #8082
  19. [19] Th. VUST, Sur la théorie classique des invariants, Comm. Math. Helv., 52 (1977), 259-295. Zbl0364.15022MR56 #15683
  20. [20] Th. VUST, Foncteurs polynomiaux et théorie des invariants, in Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin, Springer Lecture Notes, No. 725, Springer Verlag, New York, 1980, pp. 330-340. Zbl0429.14003MR82b:15020
  21. [21] H. WEYL, The Classical Groups, 2nd edn., Princeton Univ. Press, Princeton, N.J., 1946. Zbl1024.20502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.