On classical invariant theory and binary cubics
Annales de l'institut Fourier (1987)
- Volume: 37, Issue: 3, page 191-216
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSchwarz, Gerald W.. "On classical invariant theory and binary cubics." Annales de l'institut Fourier 37.3 (1987): 191-216. <http://eudml.org/doc/74763>.
@article{Schwarz1987,
abstract = {Let $G$ be a reductive complex algebraic group, and let $C[mV]^G$ denote the algebra of invariant polynomial functions on the direct sum of $m$ copies of the representations space $V$ of $G$. There is a smallest integer $n=n(V)$ such that generators and relations of $C[mV]^G$ can be obtained from those of $C[nV]^G$ by polarization and restitution for all $m>n$. We bound and the degrees of generators and relations of $C[nV]^G$, extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.},
author = {Schwarz, Gerald W.},
journal = {Annales de l'institut Fourier},
keywords = {reductive complex algebraic group; algebra of invariant polynomial functions; invariant theory of binary cubics},
language = {eng},
number = {3},
pages = {191-216},
publisher = {Association des Annales de l'Institut Fourier},
title = {On classical invariant theory and binary cubics},
url = {http://eudml.org/doc/74763},
volume = {37},
year = {1987},
}
TY - JOUR
AU - Schwarz, Gerald W.
TI - On classical invariant theory and binary cubics
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 3
SP - 191
EP - 216
AB - Let $G$ be a reductive complex algebraic group, and let $C[mV]^G$ denote the algebra of invariant polynomial functions on the direct sum of $m$ copies of the representations space $V$ of $G$. There is a smallest integer $n=n(V)$ such that generators and relations of $C[mV]^G$ can be obtained from those of $C[nV]^G$ by polarization and restitution for all $m>n$. We bound and the degrees of generators and relations of $C[nV]^G$, extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.
LA - eng
KW - reductive complex algebraic group; algebra of invariant polynomial functions; invariant theory of binary cubics
UR - http://eudml.org/doc/74763
ER -
References
top- [1] J.-F. BOUTOT, Singularités rationnelles et quotients par les groupes réductifs, Inv. Math., 88 (1987), 65-68. Zbl0619.14029MR88a:14005
- [2] J. GRACE and A. YOUNG, The Algebra of Invariants, Cambridge University Press, Cambridge, 1903. Zbl34.0114.01JFM34.0114.01
- [3] M. HOCHSTER and J. ROBERTS, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math., 13 (1974), 115-175. Zbl0289.14010MR50 #311
- [4] F. KNOP, Über die Glattheit von Quotientenabbildungen, Manuscripta Math., 56 (1986), 419-427. Zbl0585.14033MR88f:14041
- [5] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Viehweg, Braunschweig, 1984. Zbl0569.14003MR86j:14006
- [6] M. KRÄMER, Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen, Comm. in Alg., 3 (1975), 691-737. Zbl0309.22013
- [7] S. LANG, Algebra, Addison-Wesley, Reading, 1965. Zbl0193.34701MR33 #5416
- [8] D. LUNA and R. RICHARDSON, A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496. Zbl0444.14010MR80k:14049
- [9] I.G. MAC DONALD, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979. Zbl0487.20007MR84g:05003
- [10] C. PROCESI, A Primer of Invariant Theory, Brandeis Lecture Notes 1, Department of Mathematics, Brandeis University, 1982.
- [11] G. SCHWARZ, Representations of simple Lie groups with regular rings of invariants, Inv. Math., 49 (1978), 167-191. Zbl0391.20032MR80m:14032
- [12] G. SCHWARZ, Representations of simple Lie groups with a free module of covariants, Inv. Math., 50 (1978), 1-12. Zbl0391.20033MR80c:14008
- [13] G. SCHWARZ, Invariant theory of G2, Bull. Amer. Math. Soc., 9 (1983), 335-338. Zbl0531.14007MR85c:20031
- [14] G. SCHWARZ, Invariant theory of G2 and Spin7, to appear.
- [15] R.P. STANLEY, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc., 1 (1979), 475-511. Zbl0497.20002MR81a:20015
- [16] R.P. STANLEY, Combinatorics and invariant theory, Proc. Symposia Pure Math., Vol. 34, Amer. Math. Soc., Providence, R.I., 1979, 345-355. Zbl0411.22006MR80e:15020
- [17] F. VON GALL, Das vollständige Formensystem dreier cubischen binären Formen, Math. Ann., 45 (1894), 207-234. Zbl25.0186.02JFM25.0186.02
- [18] Th. VUST, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, 26-1 (1976), 1-31. Zbl0314.20035MR53 #8082
- [19] Th. VUST, Sur la théorie classique des invariants, Comm. Math. Helv., 52 (1977), 259-295. Zbl0364.15022MR56 #15683
- [20] Th. VUST, Foncteurs polynomiaux et théorie des invariants, in Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin, Springer Lecture Notes, No. 725, Springer Verlag, New York, 1980, pp. 330-340. Zbl0429.14003MR82b:15020
- [21] H. WEYL, The Classical Groups, 2nd edn., Princeton Univ. Press, Princeton, N.J., 1946. Zbl1024.20502
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.