S L 2 , the cubic and the quartic

Yannis Y. Papageorgiou

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 1, page 29-71
  • ISSN: 0373-0956

Abstract

top
We describe the branching rule from S p 4 to S L 2 , where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.

How to cite

top

Papageorgiou, Yannis Y.. "$SL_2$, the cubic and the quartic." Annales de l'institut Fourier 48.1 (1998): 29-71. <http://eudml.org/doc/75281>.

@article{Papageorgiou1998,
abstract = {We describe the branching rule from $Sp_4$ to $SL_2$, where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.},
author = {Papageorgiou, Yannis Y.},
journal = {Annales de l'institut Fourier},
keywords = {binary forms; algebras of covariants; branching rules; multiplicity formula; minimal systems of generators; geometric realizations},
language = {eng},
number = {1},
pages = {29-71},
publisher = {Association des Annales de l'Institut Fourier},
title = {$SL_2$, the cubic and the quartic},
url = {http://eudml.org/doc/75281},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Papageorgiou, Yannis Y.
TI - $SL_2$, the cubic and the quartic
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 1
SP - 29
EP - 71
AB - We describe the branching rule from $Sp_4$ to $SL_2$, where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.
LA - eng
KW - binary forms; algebras of covariants; branching rules; multiplicity formula; minimal systems of generators; geometric realizations
UR - http://eudml.org/doc/75281
ER -

References

top
  1. [Br] M. BRION, Représentations exceptionnelles des groupes semi-simples, Ann. Scient. Éc. Norm. Sup., 4e série, 18 (1985), 345-387. Zbl0588.22010MR87e:14043
  2. [G] P. GORDAN, Die simultanen Systeme binärer Formen, Math. Ann., 2 (1870), 227-280. Zbl02.0059.01JFM02.0059.01
  3. [GI] P. GORDAN, Vorlesungen über Invarianten Theorie, reprinted by Chelsea Publishing Co., New York, 1987. 
  4. [Gu] S. GUNDELFINGER, Zur Theorie des simultanen Systems einer cubischen und einer biquadratischen binären Form, J.B. Metzler, Stuttgart, 1869. Zbl02.0065.02JFM02.0065.02
  5. [H-Per] R. HOWE, Perspectives on invariant theory: Schur duality, multiplicity-free actions, and beyond, Isr. Math. Conf. Proc., 8 (1995), 1-182. Zbl0844.20027MR96e:13006
  6. [H-Rem] R. HOWE, Remarks on classical invariant theory, Trans. Amer. Math. Soc., 313 (1989), 539-570. Zbl0674.15021MR90h:22015a
  7. [HU] R. HOWE and T. UMEDA, The Capelli identity, the double commutant theorem and multiplicity-free actions, Math. Ann., 290 (1991), 565-619. Zbl0733.20019
  8. [Hum] J. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1972. Zbl0254.17004MR48 #2197
  9. [KKLV] F. KNOP et AL., Algebraic Transformation Groups and Invariant Theory (H. Kraft et al., eds), Birkhäuser Basel Boston Berlin, 1989, 63-76. Zbl0682.00008
  10. [KT] K. KOIKE and I. TERADA, Young-Diagrammatic Methods for the Representation Theory of the Classical Groups of type Bn, Cn and Dn, J. Alg., 107 (1987), 466-511. Zbl0622.20033MR88i:22035
  11. [K] B. KOSTANT, A formula for the Multiplicity of a Weight, Trans. Amer. Math. Soc., 93 (1959), 53-73. Zbl0131.27201MR22 #80
  12. [LP1] P. LITTELMANN, A Generalization of the Littlewood-Richardson Rule, J. Alg., 130 (1990), 328-368. Zbl0704.20033MR91f:22023
  13. [LP2] P. LITTELMANN, A Littlewood-Richardson Rule for Symmetrizable Kac-Moody Algebras, Invent. Math., 116 (1994), 329-346. Zbl0805.17019MR95f:17023
  14. [LDE] D.E. LITTLEWOOD, On Invariants under Restricted Groups, Philos. Trans. Roy. Soc. A, 239 (1944), 387-417. Zbl0060.04403MR7,6e
  15. [M] F. MEYER, Bericht über den gegenwärtigen Stand der Invariantentheorie, Jahresbericht der DMV, Band 1 (1892), 79-292. Zbl24.0045.01JFM24.0045.01
  16. [S] G. SALMON, Lessons Introductory to the Higher Modern Algebra, Hodges, Figgis, and Co., 1885. 
  17. [Sch] G. SCHWARZ, On classical invariant theory and binary cubics, Ann. Inst. Fourier, 37-3 (1987), 191-216. Zbl0597.14011MR89h:14036
  18. [Sp] T.A. SPRINGER, Invariant Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0346.20020MR56 #5740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.