Le complexe de Koszul en algèbre et topologie
Annales de l'institut Fourier (1987)
- Volume: 37, Issue: 4, page 77-97
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHalperin, Stephen. "Le complexe de Koszul en algèbre et topologie." Annales de l'institut Fourier 37.4 (1987): 77-97. <http://eudml.org/doc/74783>.
@article{Halperin1987,
abstract = {The Koszul complex, as introduced in 1950, was a differential graded algebra which modelled a principal fibre bundle. Since then it has been an effective tool, both in algebra and in topology, for the calculation of homological and homotopical invariants. After a partial summary of these results we recall more recent generalizations of this complex, and some applications.},
author = {Halperin, Stephen},
journal = {Annales de l'institut Fourier},
keywords = {Koszul complex; cohomology of Lie algebra pairs; cohomology of homogeneous spaces},
language = {fre},
number = {4},
pages = {77-97},
publisher = {Association des Annales de l'Institut Fourier},
title = {Le complexe de Koszul en algèbre et topologie},
url = {http://eudml.org/doc/74783},
volume = {37},
year = {1987},
}
TY - JOUR
AU - Halperin, Stephen
TI - Le complexe de Koszul en algèbre et topologie
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 4
SP - 77
EP - 97
AB - The Koszul complex, as introduced in 1950, was a differential graded algebra which modelled a principal fibre bundle. Since then it has been an effective tool, both in algebra and in topology, for the calculation of homological and homotopical invariants. After a partial summary of these results we recall more recent generalizations of this complex, and some applications.
LA - fre
KW - Koszul complex; cohomology of Lie algebra pairs; cohomology of homogeneous spaces
UR - http://eudml.org/doc/74783
ER -
References
top- [1] M. ANDRÉ, Cohomologie des algèbres différentielles où opère une algèbre de Lie, Tohoku Math. J., 14 (1962), 263-311. Zbl0201.36002MR26 #2549
- [2] P. ANDREWS and M. ARKOWITZ, Sullivan's minimal models and higher order Whitehead products, Canad. J. Math., 30 (1978), 961-982. Zbl0441.55012MR80b:55008
- [3] E. F. ASSMUS, On the homology of local rings, Ill. J. Math., 3 (1959), 187-199. Zbl0085.02401MR21 #2670
- [4] M. AUSLANDER and D. A. BUCHSBAUM, Codimension and multiplicity, Annals of Math., 68 (1958), 625-657. Zbl0092.03902MR20 #6414
- [5] L. AVRAMOV and E. S. GOLOD, On the homology of the Koszul complex of a local Gorenstein ring, Mat. Zametki, 19 (1971), 53-58 ; English translation : Math. Notes, 9 (1971), 30-32. Zbl0222.13014
- [6] L. AVRAMOV, S. STROGOLOV et A. TODOROV, On Gorenstein modules, Uspehi Math. Nauk, 27, no. 4 (1972), 199-200. Zbl0239.13015
- [7] L. AVRAMOV, On the Hopf algebra of a local ring, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 2 ; English Translation Math. USSR Izvestijas, 8 (1984), 259-284. Zbl0299.13011
- [8] L. AVRAMOV, Local algebra and rational homotopy, in Homotopie Algébrique et Algèbre Locale, Astérisque, 113/114 (1984), 15-43. Zbl0552.13003MR85j:55021
- [9] H. BASS, On the ubiquity of Gorenstein rings, Math. Zeit., 82 (1963), 8-28. Zbl0112.26604MR27 #3669
- [10] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
- [11] E. CARTAN, Sur les invariants intégraux de certains espaces homogènes et les propriétés topologiques de ces espaces, Ann. Soc. Pol. Math., 8 (1929), 181-225. Zbl56.0371.02JFM56.0371.02
- [12] H. CARTAN, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologie (espaces fibrés) Bruxelles (1950), 57-72. G. Thone, Liège. Zbl0045.30701MR13,107f
- [13] I. S. COHEN, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106. Zbl0060.07001MR7,509h
- [14] Y. FÉLIX and S. HALPERIN, Rational LS category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-38. Zbl0508.55004MR84h:55011
- [15] Y. FÉLIX, S. HALPERIN, C. JACOBSSON, C. LÖFWALL and J.-C. THOMAS, The radical of the homotopy Lie algebra, à paraître, Amer. J. Math. Zbl0654.55011
- [16] W. GREUB, S. HALPERIN, R. VANSTONE, Connections, Curvature and Cohomology, Volume III, Academie Press N.Y., 1976. Zbl0372.57001MR53 #4110
- [17] T. H. GULLIKSEN, A proof of the existence of minimal R-algebra resolutions, Acta Math., 120 (1968), 53-58. Zbl0157.34603MR37 #206
- [18] T. H. GULLIKSEN and G. LEVIN, Homology of Local Rings, Queen's Papers in Pure and Applied Mathematics No. 20, Queen's University, Kingston, Canada, 1969. Zbl0208.30304MR41 #6837
- [19] S. HALPERIN, The non-vanishing of the deviations of a local ring, à paraître, Comment. Math. Helv., 62 (1987). Zbl0639.13011MR89d:13015
- [20] H. HOPF, Uber die Topologie der Gruppen-Mannigfeltigkeiten und ihre Verallgemeinerungen, Annals of Math., 42 (1941), 22-52. Zbl0025.09303MR3,61bJFM67.0747.01
- [21] J. L. KOSZUL, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. de France, 78 (1950), 65-127. Zbl0039.02901MR12,120g
- [22] J. L. KOSZUL, Sur un type d'algèbres différentielles en rapport avec la transgression, Colloque de Topologie (espaces fibrés) Bruxelles (1950), 73-82, G. Thone, Liège. Zbl0045.30801MR13,109a
- [23] D. QUILLEN, Rational homotopy theory, Annals of Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
- [24] M. SAKUMA and H. OKUYAMA, A note on higher deflections of a local ring, J. of Math., Tokushima University, 3 (1969), 25-36. Zbl0204.06102MR41 #3468
- [25] H. SAMELSON, Beitrage zur Topologie der Gruppen-Mannigfaltigkeiten, Annals of Math., 42 (1941), 1091-1137. Zbl0063.06680
- [26] J. P. SERRE, Algèbre Local Multiplicités, Lecture Notes in Math., 11, Springer Verlag, 3e édition 1975. Zbl0296.13018
- [27] D. SULLIVAN, Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1978), 269-331. Zbl0374.57002MR58 #31119
- [28] J. TATE, Homology of Noetherian rings and local rings, Ill. J. Math., 1 (1957), 14-25. Zbl0079.05501MR19,119b
- [29] H. WIEBE, Uber homologische Invarianten lokaler Ringe, Math. Annalen, 179 (1969), 257-274. Zbl0169.05701MR41 #192
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.