Le complexe de Koszul en algèbre et topologie

Stephen Halperin

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 4, page 77-97
  • ISSN: 0373-0956

Abstract

top
Le complexe de Koszul, introduit en 1950, était une algèbre différentielle graduée qui servait comme modèle pour un fibré principal. Il a servi depuis, en algèbre et en topologie, comme outil efficace pour le calcul d’invariants homologiques et homotopiques. Après un résumé partiel de ces résultats, on rappelle des généralisations plus récentes de ce complexe et des applications

How to cite

top

Halperin, Stephen. "Le complexe de Koszul en algèbre et topologie." Annales de l'institut Fourier 37.4 (1987): 77-97. <http://eudml.org/doc/74783>.

@article{Halperin1987,
abstract = {The Koszul complex, as introduced in 1950, was a differential graded algebra which modelled a principal fibre bundle. Since then it has been an effective tool, both in algebra and in topology, for the calculation of homological and homotopical invariants. After a partial summary of these results we recall more recent generalizations of this complex, and some applications.},
author = {Halperin, Stephen},
journal = {Annales de l'institut Fourier},
keywords = {Koszul complex; cohomology of Lie algebra pairs; cohomology of homogeneous spaces},
language = {fre},
number = {4},
pages = {77-97},
publisher = {Association des Annales de l'Institut Fourier},
title = {Le complexe de Koszul en algèbre et topologie},
url = {http://eudml.org/doc/74783},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Halperin, Stephen
TI - Le complexe de Koszul en algèbre et topologie
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 4
SP - 77
EP - 97
AB - The Koszul complex, as introduced in 1950, was a differential graded algebra which modelled a principal fibre bundle. Since then it has been an effective tool, both in algebra and in topology, for the calculation of homological and homotopical invariants. After a partial summary of these results we recall more recent generalizations of this complex, and some applications.
LA - fre
KW - Koszul complex; cohomology of Lie algebra pairs; cohomology of homogeneous spaces
UR - http://eudml.org/doc/74783
ER -

References

top
  1. [1] M. ANDRÉ, Cohomologie des algèbres différentielles où opère une algèbre de Lie, Tohoku Math. J., 14 (1962), 263-311. Zbl0201.36002MR26 #2549
  2. [2] P. ANDREWS and M. ARKOWITZ, Sullivan's minimal models and higher order Whitehead products, Canad. J. Math., 30 (1978), 961-982. Zbl0441.55012MR80b:55008
  3. [3] E. F. ASSMUS, On the homology of local rings, Ill. J. Math., 3 (1959), 187-199. Zbl0085.02401MR21 #2670
  4. [4] M. AUSLANDER and D. A. BUCHSBAUM, Codimension and multiplicity, Annals of Math., 68 (1958), 625-657. Zbl0092.03902MR20 #6414
  5. [5] L. AVRAMOV and E. S. GOLOD, On the homology of the Koszul complex of a local Gorenstein ring, Mat. Zametki, 19 (1971), 53-58 ; English translation : Math. Notes, 9 (1971), 30-32. Zbl0222.13014
  6. [6] L. AVRAMOV, S. STROGOLOV et A. TODOROV, On Gorenstein modules, Uspehi Math. Nauk, 27, no. 4 (1972), 199-200. Zbl0239.13015
  7. [7] L. AVRAMOV, On the Hopf algebra of a local ring, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 2 ; English Translation Math. USSR Izvestijas, 8 (1984), 259-284. Zbl0299.13011
  8. [8] L. AVRAMOV, Local algebra and rational homotopy, in Homotopie Algébrique et Algèbre Locale, Astérisque, 113/114 (1984), 15-43. Zbl0552.13003MR85j:55021
  9. [9] H. BASS, On the ubiquity of Gorenstein rings, Math. Zeit., 82 (1963), 8-28. Zbl0112.26604MR27 #3669
  10. [10] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
  11. [11] E. CARTAN, Sur les invariants intégraux de certains espaces homogènes et les propriétés topologiques de ces espaces, Ann. Soc. Pol. Math., 8 (1929), 181-225. Zbl56.0371.02JFM56.0371.02
  12. [12] H. CARTAN, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologie (espaces fibrés) Bruxelles (1950), 57-72. G. Thone, Liège. Zbl0045.30701MR13,107f
  13. [13] I. S. COHEN, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106. Zbl0060.07001MR7,509h
  14. [14] Y. FÉLIX and S. HALPERIN, Rational LS category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-38. Zbl0508.55004MR84h:55011
  15. [15] Y. FÉLIX, S. HALPERIN, C. JACOBSSON, C. LÖFWALL and J.-C. THOMAS, The radical of the homotopy Lie algebra, à paraître, Amer. J. Math. Zbl0654.55011
  16. [16] W. GREUB, S. HALPERIN, R. VANSTONE, Connections, Curvature and Cohomology, Volume III, Academie Press N.Y., 1976. Zbl0372.57001MR53 #4110
  17. [17] T. H. GULLIKSEN, A proof of the existence of minimal R-algebra resolutions, Acta Math., 120 (1968), 53-58. Zbl0157.34603MR37 #206
  18. [18] T. H. GULLIKSEN and G. LEVIN, Homology of Local Rings, Queen's Papers in Pure and Applied Mathematics No. 20, Queen's University, Kingston, Canada, 1969. Zbl0208.30304MR41 #6837
  19. [19] S. HALPERIN, The non-vanishing of the deviations of a local ring, à paraître, Comment. Math. Helv., 62 (1987). Zbl0639.13011MR89d:13015
  20. [20] H. HOPF, Uber die Topologie der Gruppen-Mannigfeltigkeiten und ihre Verallgemeinerungen, Annals of Math., 42 (1941), 22-52. Zbl0025.09303MR3,61bJFM67.0747.01
  21. [21] J. L. KOSZUL, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. de France, 78 (1950), 65-127. Zbl0039.02901MR12,120g
  22. [22] J. L. KOSZUL, Sur un type d'algèbres différentielles en rapport avec la transgression, Colloque de Topologie (espaces fibrés) Bruxelles (1950), 73-82, G. Thone, Liège. Zbl0045.30801MR13,109a
  23. [23] D. QUILLEN, Rational homotopy theory, Annals of Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
  24. [24] M. SAKUMA and H. OKUYAMA, A note on higher deflections of a local ring, J. of Math., Tokushima University, 3 (1969), 25-36. Zbl0204.06102MR41 #3468
  25. [25] H. SAMELSON, Beitrage zur Topologie der Gruppen-Mannigfaltigkeiten, Annals of Math., 42 (1941), 1091-1137. Zbl0063.06680
  26. [26] J. P. SERRE, Algèbre Local Multiplicités, Lecture Notes in Math., 11, Springer Verlag, 3e édition 1975. Zbl0296.13018
  27. [27] D. SULLIVAN, Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1978), 269-331. Zbl0374.57002MR58 #31119
  28. [28] J. TATE, Homology of Noetherian rings and local rings, Ill. J. Math., 1 (1957), 14-25. Zbl0079.05501MR19,119b
  29. [29] H. WIEBE, Uber homologische Invarianten lokaler Ringe, Math. Annalen, 179 (1969), 257-274. Zbl0169.05701MR41 #192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.