Diamètres transfinis et problème de Favard

Michel Langevin; E. Reyssat; Georges Rhin

Annales de l'institut Fourier (1988)

  • Volume: 38, Issue: 1, page 1-16
  • ISSN: 0373-0956

Abstract

top
We show that each irrational algebraic integer has two conjugates whose distance is at least 3 . The proof uses lower bounds for discriminants of fields of small degree, elementary geometry and some machine computations.

How to cite

top

Langevin, Michel, Reyssat, E., and Rhin, Georges. "Diamètres transfinis et problème de Favard." Annales de l'institut Fourier 38.1 (1988): 1-16. <http://eudml.org/doc/74791>.

@article{Langevin1988,
abstract = {Tout entier algébrique irrationnel a deux conjugués éloignés d’au moins $\sqrt\{3\}$.},
author = {Langevin, Michel, Reyssat, E., Rhin, Georges},
journal = {Annales de l'institut Fourier},
keywords = {Favard problem; conjugate algebraic integers},
language = {fre},
number = {1},
pages = {1-16},
publisher = {Association des Annales de l'Institut Fourier},
title = {Diamètres transfinis et problème de Favard},
url = {http://eudml.org/doc/74791},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Langevin, Michel
AU - Reyssat, E.
AU - Rhin, Georges
TI - Diamètres transfinis et problème de Favard
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 1
SP - 1
EP - 16
AB - Tout entier algébrique irrationnel a deux conjugués éloignés d’au moins $\sqrt{3}$.
LA - fre
KW - Favard problem; conjugate algebraic integers
UR - http://eudml.org/doc/74791
ER -

References

top
  1. [Be] M. BERGER, Géométrie, Tome 3, Cedic, Nathan, 1978. Zbl0423.51001
  2. [Bl] P.E. BLANKSBY, Greatest distance between zeros of integral polynomials ; in Elementary and analytic theory of numbers, Banach center publications, vol. 17, Varsovie, 1984. Zbl0596.12019MR87i:11171
  3. [Bl, LS, M] P.E. BLANKSBY, C.W. LLOYD-SMITH, M.J. MCAULEY, On diameters of algebraic integers, preprint à paraître. Zbl0693.12001
  4. [D] F. DIAZ Y DIAZ, Tables minorant la racine n-ième du discriminant d'un corps de degré n, Publications mathématiques d'Orsay, 1980. Zbl0482.12003
  5. [F1] J. FAVARD, Sur les formes décomposables et les nombres algébriques, Bull. SMF, 57 (1929), 50-71. Zbl55.0724.01JFM55.0724.01
  6. [F2] J. FAVARD, Sur les nombres algébriques, Mathematica, 4 (1930), 109-113. JFM56.0863.01
  7. [L1] M. LANGEVIN, Approche géométrique du problème de Favard, CRAS, 10 (1987), 245-248. Zbl0608.12024MR88e:12001
  8. [L2] M. LANGEVIN, Etude géométrique de la mesure de Mahler et du diamètre transfini, preprint à paraître dans Pub. Math. Univ. St Etienne. 
  9. [LS1] C.W. LLOYD-SMITH, Problems on the distribution of conjugates of algebraic numbers, Ph. D. Thesis, Univ. of Adelaide, 1980. Zbl0474.12004
  10. [LS2] C.W. LLOYD-SMITH, On a problem of Favard concerning algebraic integers, Bull. Austral. Math. Soc., 29 (1984), 111-121. Zbl0545.12001MR85m:11065
  11. [M1] J. MARTINET, Petits discriminants des corps de nombres, in “Journées arithmétiques 1980”, J.V. Armitage éd., London Math. Soc. Lecture Notes Series, 56 (1982), 151-193. Zbl0491.12005MR84g:12009
  12. [M2] J. MARTINET, Méthodes géométriques dans la recherche des petits discriminants, Séminaire de théorie des nombres, Paris, 1983/1984, Birkhäuser. Zbl0567.12009
  13. [N] NEHARI, Conformal mapping, 1952. Zbl0048.31503MR13,640h
  14. [P] M. POHST, On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields ; J. Number theory, 14 (1982), 99-117. Zbl0478.12005MR83g:12009

NotesEmbed ?

top

You must be logged in to post comments.