Green functions and spectra on free products of cyclic groups

K. Aomoto; Y. Kato

Annales de l'institut Fourier (1988)

  • Volume: 38, Issue: 1, page 59-85
  • ISSN: 0373-0956

Abstract

top
Green functions of a stochastic operator on a free product of cyclic groups are explicitly evaluated as algebraic functions. The spectra are investigated by Morse theoretic argument.

How to cite

top

Aomoto, K., and Kato, Y.. "Green functions and spectra on free products of cyclic groups." Annales de l'institut Fourier 38.1 (1988): 59-85. <http://eudml.org/doc/74794>.

@article{Aomoto1988,
abstract = {Green functions of a stochastic operator on a free product of cyclic groups are explicitly evaluated as algebraic functions. The spectra are investigated by Morse theoretic argument.},
author = {Aomoto, K., Kato, Y.},
journal = {Annales de l'institut Fourier},
keywords = {Green functions of a stochastic operator on a free product of cyclic groups; Morse theoretic arguments},
language = {eng},
number = {1},
pages = {59-85},
publisher = {Association des Annales de l'Institut Fourier},
title = {Green functions and spectra on free products of cyclic groups},
url = {http://eudml.org/doc/74794},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Aomoto, K.
AU - Kato, Y.
TI - Green functions and spectra on free products of cyclic groups
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 1
SP - 59
EP - 85
AB - Green functions of a stochastic operator on a free product of cyclic groups are explicitly evaluated as algebraic functions. The spectra are investigated by Morse theoretic argument.
LA - eng
KW - Green functions of a stochastic operator on a free product of cyclic groups; Morse theoretic arguments
UR - http://eudml.org/doc/74794
ER -

References

top
  1. [A1] K. AOMOTO, Spectral theory on a free group and algebraic curves, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1985), 297-317. Zbl0583.60068MR86m:58127
  2. [A2] K. AOMOTO, A formula of eigen-function expansions. Case of asymptotic trees, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 11-14. Zbl0619.60007MR86m:22009
  3. [C] D.I. CARTWRIGHT & P. M. SOARDI, Random walks on free products, quotients and amalgams, Nagoya Math. J., 102 (1986), 163-180. Zbl0592.60052MR88i:60120a
  4. [F1] A. FIGÀ-TALAMANCA & M.A. PICARDELLO, Harmonic analysis on free groups, Lecture Notes in Pure and Appl. Math. 87, Dekker, New York, 1983. Zbl0536.43001MR85j:43001
  5. (F2) U. FULTON, Introduction to intersection theory in algebraic geometry, Regional Conf. in Math. 54, Amer. Math. Soc., Providence, 1983. Zbl0913.14001
  6. [H1] W.V.D. HODGE & D. PEDOE, Methods of algebraic geometry, Cambridge Univ. Press, London, 1951. 
  7. [H2] M. HASHIZUME, Canonical representations and Fock representations of free groups, preprint, 1984. 
  8. [I1] A. IOZZI & M.A. PICARDELLO, Spherical functions on symmetric graphs, Lecture Notes in Math. 992, Springer, Berlin-New York, 1982. Zbl0535.43005
  9. [I2] A. IOZZI & M.A. PICARDELLO, Graphs and convolution operators, Topics in Modern Harmonic Analysis, Turin, Milan, 1982. Zbl0537.43006
  10. [K] Ts. KAJIWARA, On irreducible decompositions of the regular representations of free groups, Boll. Un. Mat. Ital. A, 4 (1985), 425-431. Zbl0586.22004MR87i:22017
  11. [M1] A.M. MANTERO & A. ZAPPA, The Poisson transform and representations of a free group, J. Funct. Anal., 51 (1983), 373-399. Zbl0532.43006MR85b:22010
  12. [M2] J. MILNOR, Singular points of complex hypersurfaces, Ann. of Math. Stud. 61, Princeton Univ. Press, Princeton, 1968. Zbl0184.48405MR39 #969
  13. [P] M. PICARDELLO & W. WOESS, Random walks on amalgams, Monatsh. Math., 100 (1985), 21-33. Zbl0564.60069MR87d:60066
  14. [S1] T. STEGER, Harmonic analysis for an anisotropic random walk on a homogeneous tree, thesis, Washington Univ., St. Louis, 1985. 
  15. [S2] G. SZEGÖ, Orthogonal polynomials, Amer. Math. Sc. Collq. 23, Amer. Math. Soc., Providence, 1939. Zbl0023.21505JFM65.0278.03
  16. [T] M. TODA, Theory of non-linear lattices, Ser. Solid-State Sci. 20, Springer, Berlin-New York, 1981. Zbl0465.70014MR82k:58052b

NotesEmbed ?

top

You must be logged in to post comments.