Random walks on free products
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 2, page 467-491
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKuhn, M. Gabriella. "Random walks on free products." Annales de l'institut Fourier 41.2 (1991): 467-491. <http://eudml.org/doc/74925>.
@article{Kuhn1991,
abstract = {Let $G=*^\{q+1\}_\{j=1\}G_\{\{n_j\}+1\}$ be the product of $q\{+\}1$ finite groups each having order $n_ j\{+\}1$ and let $\mu $ be the probability measure which takes the value $p_ j/n_ j$ on each element of $G_\{\{n_j\}+1\}\setminus \lbrace e\rbrace $. In this paper we shall describe the point spectrum of $\mu $ in $C^*_\{\rm reg\}(G)$ and the corresponding eigenspaces. In particular we shall see that the point spectrum occurs only for suitable choices of the numbers $n_j$. We also compute the continuous spectrum of $\mu $ in $C^*_\{\rm reg\}(G)$ in several cases. A family of irreducible representations of $G$, parametrized on the continuous spectrum of $\mu $, is here presented. Finally, we shall get a decomposition of the regular representation of $G$ by means of the Green function of $\mu $ and the decomposition is into irreducibles if and only if there are no true eigenspaces for $\mu $.},
author = {Kuhn, M. Gabriella},
journal = {Annales de l'institut Fourier},
keywords = {free products; point spectrum; irreducible representations; decomposition of the regular representation},
language = {eng},
number = {2},
pages = {467-491},
publisher = {Association des Annales de l'Institut Fourier},
title = {Random walks on free products},
url = {http://eudml.org/doc/74925},
volume = {41},
year = {1991},
}
TY - JOUR
AU - Kuhn, M. Gabriella
TI - Random walks on free products
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 2
SP - 467
EP - 491
AB - Let $G=*^{q+1}_{j=1}G_{{n_j}+1}$ be the product of $q{+}1$ finite groups each having order $n_ j{+}1$ and let $\mu $ be the probability measure which takes the value $p_ j/n_ j$ on each element of $G_{{n_j}+1}\setminus \lbrace e\rbrace $. In this paper we shall describe the point spectrum of $\mu $ in $C^*_{\rm reg}(G)$ and the corresponding eigenspaces. In particular we shall see that the point spectrum occurs only for suitable choices of the numbers $n_j$. We also compute the continuous spectrum of $\mu $ in $C^*_{\rm reg}(G)$ in several cases. A family of irreducible representations of $G$, parametrized on the continuous spectrum of $\mu $, is here presented. Finally, we shall get a decomposition of the regular representation of $G$ by means of the Green function of $\mu $ and the decomposition is into irreducibles if and only if there are no true eigenspaces for $\mu $.
LA - eng
KW - free products; point spectrum; irreducible representations; decomposition of the regular representation
UR - http://eudml.org/doc/74925
ER -
References
top- [A] K. AOMOTO, Spectral theory on a free group and algebraic curves, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 31 (1984), 297-317. Zbl0583.60068MR86m:58127
- [AK] K. AOMOTO, Y. KATO, Green functions and spectra on free products of cyclic groups, Annales Inst. Fourier, 38-1 (1988), 59-85. Zbl0639.60008MR89m:58201
- [CF-T] C. CECCHINI, A. FIGÁ-TALAMANCA, Projections of uniqueness for Lp(G), Pacific J. of Math., 51 (1974), 34-37. Zbl0252.43007MR52 #14849
- [CS1] D. I. CARTWRIGHT, P. M. SOARDI, Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal., 65 (1986), 147-171. Zbl0619.43003MR87m:22015
- [CS2] D. I. CARTWRIGHT, P. M. SOARDI, Random walks on free products, quotient and amalgams, Nagoya Math. J., 102 (1986), 163-180. Zbl0592.60052MR88i:60120a
- [CT] J. M. COHEN, A. R. TRENHOLME, Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis, J. Funct. Anal., 59 (1984), 175-184. Zbl0549.43002MR86d:42024
- [DM] E. D. DYNKIN, M. B. MALYUTOV, Random walk on groups with a finite number of generators, Sov. Math. Dokl., 2 (1961), 399-402. Zbl0214.44101
- [DS] N. DUNFORD, J. T. SCHWARTZ, Linear Operators, Interscience, New York, 1963.
- [F-TS] A. FIGÁ-TALAMANCA, T. STEGER, Harmonic analysis for anisotropic random walks on homogeneous trees, to appear in Memoirs A.M.S. Zbl0836.43019
- [IP] A. IOZZI, M. PICARDELLO, Spherical functions on symmetrical graphs, Harmonic Analysis, Proceedings Cortona, Italy, Springer Lecture Notes in Math.
- [K] G. KUHN, Anisotropic random walks on the free product of cyclic groups, irreducible representations and indempotents of C*reg(G), preprint. Zbl0767.22001
- [K-S] G. KUHN, T. STEGER, Restrictions of the special representation of Aut(Trees) to two cocompact subgroups, to appear in Rocky Moutain J. Zbl0795.22004
- [M-L] MCLAUGHLIN, Random walks and convolution operators on free products, Doctoral Dissertation, New York University.
- [S] T. STEGER, Harmonic analysis for anisotropic random walks on homogeneous trees, Doctoral Dissertation, Washington University, St. Louis. Zbl0836.43019
- [T1] A. R. TRENHOLME, Maximal abelian subalgebras of function algebras associated with free products, J. Funct. Anal., 79 (1988), 342-350. Zbl0665.46049MR90c:46073
- [T2] A. R. TRENHOLME, A Green's function for non-homogeneous random walks on free products, Math. Z., 199 (1989), 425-441. Zbl0638.60010MR90d:60012
- [W1] W. WOESS, Nearest neighbour random walks on free products of discrete groups, Boll. U.M.I., 65 B (1986), 961-982. Zbl0627.60012MR88i:60120b
- [W2] W. WOESS, Context-free language and random walks on groups, Discrete Math., 64 (1987), 81-87. Zbl0637.60014MR88m:60020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.