Fourier coefficients of continuous functions and a class of multipliers

Serguei V. Kislyakov

Annales de l'institut Fourier (1988)

  • Volume: 38, Issue: 2, page 147-183
  • ISSN: 0373-0956

Abstract

top
If x is a bounded function on Z , the multiplier with symbol x (denoted by M x ) is defined by ( M x f ) ^ = x f ^ , f L 2 ( T ) . We give some conditions on x ensuring the “interpolation inequality” M x f L p C f L 1 α M x f L q 1 - α (here 1 < p < q and α = α ( p , q , x ) is between 0 and 1). In most cases considered M x fails to have stronger L 1 -regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets E Z every positive sequence in 2 ( E ) can be majorized by the sequence { | f ^ ( n ) | } n E for some continuous funtion f with spectrum in E .

How to cite

top

Kislyakov, Serguei V.. "Fourier coefficients of continuous functions and a class of multipliers." Annales de l'institut Fourier 38.2 (1988): 147-183. <http://eudml.org/doc/74798>.

@article{Kislyakov1988,
abstract = {If $x$ is a bounded function on $\{\bf Z\}$, the multiplier with symbol $x$ (denoted by $M_ x)$ is defined by $(M_ xf)\{\hat\{\ \}\}=x\hat\{f\}$, $f\in L^ 2(\{\bf T\})$. We give some conditions on $x$ ensuring the “interpolation inequality” $\Vert M_ xf\Vert _\{L^ p\}\le C\Vert f\Vert ^\{\alpha \}_\{L^ 1\}\Vert M_ xf\Vert _\{L^ q\}^\{1-\alpha \}$ (here $1&lt; p&lt; q$ and $\alpha =\alpha (p,q,x)$ is between 0 and 1). In most cases considered $M_ x$ fails to have stronger $L^ 1$-regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets $E\subset \{\bf Z\}$ every positive sequence in $\ell ^ 2(E)$ can be majorized by the sequence $\lbrace $$\vert \hat\{f\}(n)\vert \rbrace _\{n\in E\}$ for some continuous funtion $f$ with spectrum in $E$.},
author = {Kislyakov, Serguei V.},
journal = {Annales de l'institut Fourier},
keywords = {multiplier; interpolation inequality; -regularity properties},
language = {eng},
number = {2},
pages = {147-183},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fourier coefficients of continuous functions and a class of multipliers},
url = {http://eudml.org/doc/74798},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Kislyakov, Serguei V.
TI - Fourier coefficients of continuous functions and a class of multipliers
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 2
SP - 147
EP - 183
AB - If $x$ is a bounded function on ${\bf Z}$, the multiplier with symbol $x$ (denoted by $M_ x)$ is defined by $(M_ xf){\hat{\ }}=x\hat{f}$, $f\in L^ 2({\bf T})$. We give some conditions on $x$ ensuring the “interpolation inequality” $\Vert M_ xf\Vert _{L^ p}\le C\Vert f\Vert ^{\alpha }_{L^ 1}\Vert M_ xf\Vert _{L^ q}^{1-\alpha }$ (here $1&lt; p&lt; q$ and $\alpha =\alpha (p,q,x)$ is between 0 and 1). In most cases considered $M_ x$ fails to have stronger $L^ 1$-regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets $E\subset {\bf Z}$ every positive sequence in $\ell ^ 2(E)$ can be majorized by the sequence $\lbrace $$\vert \hat{f}(n)\vert \rbrace _{n\in E}$ for some continuous funtion $f$ with spectrum in $E$.
LA - eng
KW - multiplier; interpolation inequality; -regularity properties
UR - http://eudml.org/doc/74798
ER -

References

top
  1. [1] J. BOURGAIN, Bilinear forms on Hé and bounded bianalytic functions, Trans. Amer. Math. Soc., 286, N° 1 (1984), 313-337. Zbl0572.46048MR86c:46060
  2. [2] R. R. COIFMAN, G. WEISS, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, N° 4 (1977), 569-645. Zbl0358.30023MR56 #6264
  3. [3] K. de LEEUW, Y. KATZNELSON, J.-P. KAHANE, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris, Sér. A, 285, N° 16 (1977), 1001-1003. Zbl0372.42004MR58 #23319
  4. [4] J. GARCÍA-CUERVA, J. L. RUBIO DE FRANCIA, Weighted norm inequalities and related topics, North Holland, Amsterdam, New York, Oxford, 1985. Zbl0578.46046MR87d:42023
  5. [5] S. V. HRUŠčËV (S. V. Khrushtchëv), S. A. VINOGRADOV, Free interpolation in the space of uniformly convergent Taylor series, Lecture Notes Math., 864, Springer, Berlin, 1981, 171-213. Zbl0463.30001MR83b:30032
  6. [6] S. V. KISLYAKOV, On reflexive subspaces of the space C*A, Funktsionalnyi Anal. i ego Prilozhen., 13, No 1 (1979), 21-30 (Russian). Zbl0417.46057
  7. [7] S. V. KISLYAKOV, Fourier coefficients of boundary values of functions analytic in the disc and in the bidisc, Trudy Matem. Inst. im. V. A. Steklova, 155 (1981), 77-94 (Russian). Zbl0506.42006MR83a:42005
  8. [8] S. V. KISLYAKOV, A substitute for the weak type (1, 1) inequality for multiple Riesz projections, Linear and Complex Analysis Problem Book, Lecture Notes Math., 1043, Springer, Berlin, 1984, 322-324. 
  9. [9] B. MAUREY, Nouveaux théorèmes de Nikishin (suite et fin), Séminaire Maurey-Schwartz, 1973-1974, Exposé No V, École Polytechnique, Paris, 1974. Zbl0296.46035
  10. [10] W. RUDIN, Trigonometric series with gaps, J. Math. Mech., 9, N° 2 (1960), 203-227. Zbl0091.05802MR22 #6972
  11. [11] S. SAWYER, Maximal inequalities of weak type, Ann. Math., 84, N° 1 (1966), 157-173. Zbl0186.20503MR35 #763
  12. [12] S. SIDON, Einige Sätze und Fragestellungen über Fourier-Koeffizienten, Math. Z., 34, N° 4 (1932), 477-480. Zbl0003.25401
  13. [13] P. SJÖGREN, P. SJÖLIN, Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets, Ann. Inst. Fourier, 31, n° 1 (1981), 157-175. Zbl0437.42011MR82g:42014
  14. [14] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR44 #7280
  15. [15] S. V. VINOGRADOV, A strengthening of the Kolmogorov theorem on conjugate function and interpolation properties of uniformly convergent power series, Trudy Matem. Inst. im V. A. Steklova, 155 (1981), 7-40 (Russian). Zbl0468.30036MR83b:42024
  16. [16] A. ZYGMUND, Trigonometric series, vol. I, II, Cambridge at the University Press, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.