Fourier coefficients of continuous functions and a class of multipliers
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 2, page 147-183
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKislyakov, Serguei V.. "Fourier coefficients of continuous functions and a class of multipliers." Annales de l'institut Fourier 38.2 (1988): 147-183. <http://eudml.org/doc/74798>.
@article{Kislyakov1988,
abstract = {If $x$ is a bounded function on $\{\bf Z\}$, the multiplier with symbol $x$ (denoted by $M_ x)$ is defined by $(M_ xf)\{\hat\{\ \}\}=x\hat\{f\}$, $f\in L^ 2(\{\bf T\})$. We give some conditions on $x$ ensuring the “interpolation inequality” $\Vert M_ xf\Vert _\{L^ p\}\le C\Vert f\Vert ^\{\alpha \}_\{L^ 1\}\Vert M_ xf\Vert _\{L^ q\}^\{1-\alpha \}$ (here $1< p< q$ and $\alpha =\alpha (p,q,x)$ is between 0 and 1). In most cases considered $M_ x$ fails to have stronger $L^ 1$-regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets $E\subset \{\bf Z\}$ every positive sequence in $\ell ^ 2(E)$ can be majorized by the sequence $\lbrace $$\vert \hat\{f\}(n)\vert \rbrace _\{n\in E\}$ for some continuous funtion $f$ with spectrum in $E$.},
author = {Kislyakov, Serguei V.},
journal = {Annales de l'institut Fourier},
keywords = {multiplier; interpolation inequality; -regularity properties},
language = {eng},
number = {2},
pages = {147-183},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fourier coefficients of continuous functions and a class of multipliers},
url = {http://eudml.org/doc/74798},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Kislyakov, Serguei V.
TI - Fourier coefficients of continuous functions and a class of multipliers
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 2
SP - 147
EP - 183
AB - If $x$ is a bounded function on ${\bf Z}$, the multiplier with symbol $x$ (denoted by $M_ x)$ is defined by $(M_ xf){\hat{\ }}=x\hat{f}$, $f\in L^ 2({\bf T})$. We give some conditions on $x$ ensuring the “interpolation inequality” $\Vert M_ xf\Vert _{L^ p}\le C\Vert f\Vert ^{\alpha }_{L^ 1}\Vert M_ xf\Vert _{L^ q}^{1-\alpha }$ (here $1< p< q$ and $\alpha =\alpha (p,q,x)$ is between 0 and 1). In most cases considered $M_ x$ fails to have stronger $L^ 1$-regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets $E\subset {\bf Z}$ every positive sequence in $\ell ^ 2(E)$ can be majorized by the sequence $\lbrace $$\vert \hat{f}(n)\vert \rbrace _{n\in E}$ for some continuous funtion $f$ with spectrum in $E$.
LA - eng
KW - multiplier; interpolation inequality; -regularity properties
UR - http://eudml.org/doc/74798
ER -
References
top- [1] J. BOURGAIN, Bilinear forms on Hé and bounded bianalytic functions, Trans. Amer. Math. Soc., 286, N° 1 (1984), 313-337. Zbl0572.46048MR86c:46060
- [2] R. R. COIFMAN, G. WEISS, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, N° 4 (1977), 569-645. Zbl0358.30023MR56 #6264
- [3] K. de LEEUW, Y. KATZNELSON, J.-P. KAHANE, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris, Sér. A, 285, N° 16 (1977), 1001-1003. Zbl0372.42004MR58 #23319
- [4] J. GARCÍA-CUERVA, J. L. RUBIO DE FRANCIA, Weighted norm inequalities and related topics, North Holland, Amsterdam, New York, Oxford, 1985. Zbl0578.46046MR87d:42023
- [5] S. V. HRUŠčËV (S. V. Khrushtchëv), S. A. VINOGRADOV, Free interpolation in the space of uniformly convergent Taylor series, Lecture Notes Math., 864, Springer, Berlin, 1981, 171-213. Zbl0463.30001MR83b:30032
- [6] S. V. KISLYAKOV, On reflexive subspaces of the space C*A, Funktsionalnyi Anal. i ego Prilozhen., 13, No 1 (1979), 21-30 (Russian). Zbl0417.46057
- [7] S. V. KISLYAKOV, Fourier coefficients of boundary values of functions analytic in the disc and in the bidisc, Trudy Matem. Inst. im. V. A. Steklova, 155 (1981), 77-94 (Russian). Zbl0506.42006MR83a:42005
- [8] S. V. KISLYAKOV, A substitute for the weak type (1, 1) inequality for multiple Riesz projections, Linear and Complex Analysis Problem Book, Lecture Notes Math., 1043, Springer, Berlin, 1984, 322-324.
- [9] B. MAUREY, Nouveaux théorèmes de Nikishin (suite et fin), Séminaire Maurey-Schwartz, 1973-1974, Exposé No V, École Polytechnique, Paris, 1974. Zbl0296.46035
- [10] W. RUDIN, Trigonometric series with gaps, J. Math. Mech., 9, N° 2 (1960), 203-227. Zbl0091.05802MR22 #6972
- [11] S. SAWYER, Maximal inequalities of weak type, Ann. Math., 84, N° 1 (1966), 157-173. Zbl0186.20503MR35 #763
- [12] S. SIDON, Einige Sätze und Fragestellungen über Fourier-Koeffizienten, Math. Z., 34, N° 4 (1932), 477-480. Zbl0003.25401
- [13] P. SJÖGREN, P. SJÖLIN, Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets, Ann. Inst. Fourier, 31, n° 1 (1981), 157-175. Zbl0437.42011MR82g:42014
- [14] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR44 #7280
- [15] S. V. VINOGRADOV, A strengthening of the Kolmogorov theorem on conjugate function and interpolation properties of uniformly convergent power series, Trudy Matem. Inst. im V. A. Steklova, 155 (1981), 7-40 (Russian). Zbl0468.30036MR83b:42024
- [16] A. ZYGMUND, Trigonometric series, vol. I, II, Cambridge at the University Press, 1959. Zbl0085.05601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.