Displaying similar documents to “Fourier coefficients of continuous functions and a class of multipliers”

Spherical summation : a problem of E.M. Stein

Antonio Cordoba, B. Lopez-Melero (1981)

Annales de l'institut Fourier

Similarity:

Writing ( T R λ f ) ^ ( ξ ) = ( 1 - | ξ | 2 / R 2 ) + λ f ^ ( ξ ) . E. Stein conjectured j | T R j λ f i | 2 1 / 2 p C j | f j | 2 1 / 2 p for λ > 0 , 4 3 p 4 and C = C λ , p . We prove this conjecture. We prove also f ( x ) = lim j T 2 j λ f ( x ) a.e. We only assume 4 3 + 2 λ < p < 4 1 - 2 λ .

Unconditionality, Fourier multipliers and Schur multipliers

Cédric Arhancet (2012)

Colloquium Mathematicae

Similarity:

Let G be an infinite locally compact abelian group and X be a Banach space. We show that if every bounded Fourier multiplier T on L²(G) has the property that T I d X is bounded on L²(G,X) then X is isomorphic to a Hilbert space. Moreover, we prove that if 1 < p < ∞, p ≠ 2, then there exists a bounded Fourier multiplier on L p ( G ) which is not completely bounded. Finally, we examine unconditionality from the point of view of Schur multipliers. More precisely, we give several necessary and sufficient...

Multilinear Fourier multipliers with minimal Sobolev regularity, I

Loukas Grafakos, Hanh Van Nguyen (2016)

Colloquium Mathematicae

Similarity:

We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces H p k , 0 < p k 1 , to Lebesgue spaces L p . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral...

Multipliers of the Hardy space H¹ and power bounded operators

Gilles Pisier (2001)

Colloquium Mathematicae

Similarity:

We study the space of functions φ: ℕ → ℂ such that there is a Hilbert space H, a power bounded operator T in B(H) and vectors ξ, η in H such that φ(n) = ⟨Tⁿξ,η⟩. This implies that the matrix ( φ ( i + j ) ) i , j 0 is a Schur multiplier of B(ℓ₂) or equivalently is in the space (ℓ₁ ⊗̌ ℓ₁)*. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of H¹ which we call “shift-bounded”. We show that there is a φ which...

Absolute convergence of multiple Fourier integrals

Yurii Kolomoitsev, Elijah Liflyand (2013)

Studia Mathematica

Similarity:

Various new sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained. The results are given in terms of L p integrability of the function and its partial derivatives, each with a different p. These p are subject to certain relations known earlier only for some particular cases. Sharpness and applications of the results obtained are also discussed.

An L p -version of a theorem of D.A. Raikov

Gero Fendler (1985)

Annales de l'institut Fourier

Similarity:

Let G be a locally compact group, for p ( 1 , ) let P f p ( G ) denote the closure of L 1 ( G ) in the convolution operators on L p ( G ) . Denote W p ( G ) the dual of P f p ( G ) which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space A p ( G ) . It is shown that on the unit sphere of W p ( G ) the σ ( W p , P f p ) topology and the strong A p -multiplier topology coincide.

Fourier multipliers for Hölder continuous functions and maximal regularity

Wolfgang Arendt, Charles Batty, Shangquan Bu (2004)

Studia Mathematica

Similarity:

Two operator-valued Fourier multiplier theorems for Hölder spaces are proved, one periodic, the other on the line. In contrast to the L p -situation they hold for arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can be characterized by simple resolvent estimates of the underlying operator.

A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains

Michał Wojciechowski (2000)

Studia Mathematica

Similarity:

It is proved that if m : d satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the H 1 space on the product domain d 1 × . . . × d k . This implies an estimate of the norm N ( m , L p ( d ) of the multiplier transformation of m on L p ( d ) as p→1. Precisely we get N ( m , L p ( d ) ) ( p - 1 ) - k . This bound is the best possible in general.

A multiplier theorem for Fourier series in several variables

Nakhle Asmar, Florence Newberger, Saleem Watson (2006)

Colloquium Mathematicae

Similarity:

We define a new type of multiplier operators on L p ( N ) , where N is the N-dimensional torus, and use tangent sequences from probability theory to prove that the operator norms of these multipliers are independent of the dimension N. Our construction is motivated by the conjugate function operator on L p ( N ) , to which the theorem applies as a particular example.

Unique continuation for the solutions of the laplacian plus a drift

Alberto Ruiz, Luis Vega (1991)

Annales de l'institut Fourier

Similarity:

We prove unique continuation for solutions of the inequality | Δ u ( x ) | V ( x ) | u ( x ) | , x Ω a connected set contained in R n and V is in the Morrey spaces F α , p , with p ( n - 2 ) / 2 ( 1 - α ) and α &lt; 1 . These spaces include L q for q ( 3 n - 2 ) / 2 (see [H], [BKRS]). If p = ( n - 2 ) / 2 ( 1 - α ) , the extra assumption of V being small enough is needed.

Józef Marcinkiewicz (1910-1940) - on the centenary of his birth

Lech Maligranda (2011)

Banach Center Publications

Similarity:

Józef Marcinkiewicz’s (1910-1940) name is not known by many people, except maybe a small group of mathematicians, although his influence on the analysis and probability theory of the twentieth century was enormous. This survey of his life and work is in honour of the 100 t h anniversary of his birth and 70 t h anniversary of his death. The discussion is divided into two periods of Marcinkiewicz’s life. First, 1910-1933, that is, from his birth to his graduation from the University of Stefan Batory...

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

Similarity:

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

The Herz-Schur multiplier norm of sets satisfying the Leinert condition

Éric Ricard, Ana-Maria Stan (2011)

Colloquium Mathematicae

Similarity:

It is well known that in a free group , one has | | χ E | | M c b A ( ) 2 , where E is the set of all the generators. We show that the (completely) bounded multiplier norm of any set satisfying the Leinert condition depends only on its cardinality. Consequently, based on a result of Wysoczański, we obtain a formula for | | χ E | | M c b A ( ) .

On functions whose translates are independent

Ralph E. Edwards (1951)

Annales de l'institut Fourier

Similarity:

Ce travail est l’étude de divers cas particuliers d’un problème nouveau, semble-t-il, concernant les translatées de fonctions ou de distributions sur un groupe. Soit E un espace vectoriel topologique de fonctions ou de distributions sur un groupe abélien G localement compact ; E est supposé invariant par les translations a f a ( x ) = f ( x + a ) ( f E , a G ) . Si f E et si A est un sous-ensemble non vide de G , I ( f , A ) = I ( f , A , E ) désigne le sous-espace vectoriel fermé de E engendré par les translatées f a de f avec a A . On dira qu’une f E a ses...