On continuous functions with no unilateral derivatives
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 2, page 43-62
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topHata, Masayoshi. "On continuous functions with no unilateral derivatives." Annales de l'institut Fourier 38.2 (1988): 43-62. <http://eudml.org/doc/74802>.
@article{Hata1988,
	abstract = {We construct a family of continuous functions on the unit interval which have nowhere a unilateral derivative finite or infinite by using De Rham’s functional equations. Then we show that for any $\alpha $$\in [0,1)$ there exists an $f_\{\alpha \}$ in any Lipschitz class of order less than one such that the set of knot points of $f_\{\alpha \}$ has a measure $\alpha $.},
	author = {Hata, Masayoshi},
	journal = {Annales de l'institut Fourier},
	keywords = {continuous functions on the unit interval which have nowhere a unilateral derivative; de Rham's functional equations; set of knot points},
	language = {eng},
	number = {2},
	pages = {43-62},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {On continuous functions with no unilateral derivatives},
	url = {http://eudml.org/doc/74802},
	volume = {38},
	year = {1988},
}
TY  - JOUR
AU  - Hata, Masayoshi
TI  - On continuous functions with no unilateral derivatives
JO  - Annales de l'institut Fourier
PY  - 1988
PB  - Association des Annales de l'Institut Fourier
VL  - 38
IS  - 2
SP  - 43
EP  - 62
AB  - We construct a family of continuous functions on the unit interval which have nowhere a unilateral derivative finite or infinite by using De Rham’s functional equations. Then we show that for any $\alpha $$\in [0,1)$ there exists an $f_{\alpha }$ in any Lipschitz class of order less than one such that the set of knot points of $f_{\alpha }$ has a measure $\alpha $.
LA  - eng
KW  - continuous functions on the unit interval which have nowhere a unilateral derivative; de Rham's functional equations; set of knot points
UR  - http://eudml.org/doc/74802
ER  - 
References
top- [1] S. BANACH, Über die Baire'sche Ketegorie gewisser Funktionenmengen, Studia Math., 3 (1931), 174-179. Zbl0003.29703JFM57.0305.05
 - [2] A. DENJOY, Mémoire sur les nombres dérivés des fonctions continues, J. Math. Pures Appl. (Ser. 7), 1 (1915), 105-240. Zbl45.1285.01JFM45.1285.01
 - [3] K. M. GARG, On asymmetrical derivates of non-differentiable functions, Canad. J. Math., 20 (1968), 135-143. Zbl0194.08601MR36 #3930
 - [4] M. HATA, On the structure of self-similar sets, Japan J. Appl. Math., 2 (1985), 381-414. Zbl0608.28003MR87g:58080
 - [5] V. JARNIK, Über die Differenzierbarkeit stetiger Funktionen, Fund. Math., 21 (1933), 48-58. Zbl0007.40102JFM59.0287.03
 - [6] R. L. JEFFERY, The Theory of Functions of a Real Variable, Toronto, 1951, pp. 172-181. Zbl0043.27901MR13,216b
 - [7] S. MAZURKIEWICZ, Sur les fonctions non dérivables, Studia Math., 3 (1931), 92-94. Zbl0003.29702JFM57.0305.04
 - [8] A. P. MORSE, A continuous function with no unilateral derivatives, Trans. Amer. Math. Soc., 44 (1938), 496-507. Zbl0019.40103MR1501978JFM64.0205.01
 - [9] E. D. PEPPER, On continuous functions without a derivative, Fund. Math., 12 (1928), 244-253. Zbl54.0275.02JFM54.0275.02
 - [10] G. DE RHAM, Sur quelques courbes définies par des équations fonctionnelles, Rend. Sem. Mat. Torino, 16 (1957), 101-113. Zbl0079.16105MR20 #1733
 - [11] S. SAKS, On the functions of Besicovitch in the space of continuous functions, Fund. Math., 19 (1932), 211-219. Zbl0005.39105JFM58.0256.03
 - [12] A. N. SINGH, On functions without one-sided derivatives I, Proc. Benares Math. Soc., 3 (1941), 55-69. Zbl0063.07046MR5,175a
 - [13] A. N. SINGH, On functions without one-sided derivatives II, Proc. Benares Math. Soc., 4 (1942), 95-108. Zbl0063.07047MR5,232e
 - [14] W. H. YOUNG, On the derivates of non-differentiable functions, Messenger of Math., 38 (1908), 65-69. JFM39.0470.04
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.