On continuous functions with no unilateral derivatives

Masayoshi Hata

Annales de l'institut Fourier (1988)

  • Volume: 38, Issue: 2, page 43-62
  • ISSN: 0373-0956

Abstract

top
We construct a family of continuous functions on the unit interval which have nowhere a unilateral derivative finite or infinite by using De Rham’s functional equations. Then we show that for any α [ 0 , 1 ) there exists an f α in any Lipschitz class of order less than one such that the set of knot points of f α has a measure α .

How to cite

top

Hata, Masayoshi. "On continuous functions with no unilateral derivatives." Annales de l'institut Fourier 38.2 (1988): 43-62. <http://eudml.org/doc/74802>.

@article{Hata1988,
abstract = {We construct a family of continuous functions on the unit interval which have nowhere a unilateral derivative finite or infinite by using De Rham’s functional equations. Then we show that for any $\alpha $$\in [0,1)$ there exists an $f_\{\alpha \}$ in any Lipschitz class of order less than one such that the set of knot points of $f_\{\alpha \}$ has a measure $\alpha $.},
author = {Hata, Masayoshi},
journal = {Annales de l'institut Fourier},
keywords = {continuous functions on the unit interval which have nowhere a unilateral derivative; de Rham's functional equations; set of knot points},
language = {eng},
number = {2},
pages = {43-62},
publisher = {Association des Annales de l'Institut Fourier},
title = {On continuous functions with no unilateral derivatives},
url = {http://eudml.org/doc/74802},
volume = {38},
year = {1988},
}

TY - JOUR
AU - Hata, Masayoshi
TI - On continuous functions with no unilateral derivatives
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 2
SP - 43
EP - 62
AB - We construct a family of continuous functions on the unit interval which have nowhere a unilateral derivative finite or infinite by using De Rham’s functional equations. Then we show that for any $\alpha $$\in [0,1)$ there exists an $f_{\alpha }$ in any Lipschitz class of order less than one such that the set of knot points of $f_{\alpha }$ has a measure $\alpha $.
LA - eng
KW - continuous functions on the unit interval which have nowhere a unilateral derivative; de Rham's functional equations; set of knot points
UR - http://eudml.org/doc/74802
ER -

References

top
  1. [1] S. BANACH, Über die Baire'sche Ketegorie gewisser Funktionenmengen, Studia Math., 3 (1931), 174-179. Zbl0003.29703JFM57.0305.05
  2. [2] A. DENJOY, Mémoire sur les nombres dérivés des fonctions continues, J. Math. Pures Appl. (Ser. 7), 1 (1915), 105-240. Zbl45.1285.01JFM45.1285.01
  3. [3] K. M. GARG, On asymmetrical derivates of non-differentiable functions, Canad. J. Math., 20 (1968), 135-143. Zbl0194.08601MR36 #3930
  4. [4] M. HATA, On the structure of self-similar sets, Japan J. Appl. Math., 2 (1985), 381-414. Zbl0608.28003MR87g:58080
  5. [5] V. JARNIK, Über die Differenzierbarkeit stetiger Funktionen, Fund. Math., 21 (1933), 48-58. Zbl0007.40102JFM59.0287.03
  6. [6] R. L. JEFFERY, The Theory of Functions of a Real Variable, Toronto, 1951, pp. 172-181. Zbl0043.27901MR13,216b
  7. [7] S. MAZURKIEWICZ, Sur les fonctions non dérivables, Studia Math., 3 (1931), 92-94. Zbl0003.29702JFM57.0305.04
  8. [8] A. P. MORSE, A continuous function with no unilateral derivatives, Trans. Amer. Math. Soc., 44 (1938), 496-507. Zbl0019.40103MR1501978JFM64.0205.01
  9. [9] E. D. PEPPER, On continuous functions without a derivative, Fund. Math., 12 (1928), 244-253. Zbl54.0275.02JFM54.0275.02
  10. [10] G. DE RHAM, Sur quelques courbes définies par des équations fonctionnelles, Rend. Sem. Mat. Torino, 16 (1957), 101-113. Zbl0079.16105MR20 #1733
  11. [11] S. SAKS, On the functions of Besicovitch in the space of continuous functions, Fund. Math., 19 (1932), 211-219. Zbl0005.39105JFM58.0256.03
  12. [12] A. N. SINGH, On functions without one-sided derivatives I, Proc. Benares Math. Soc., 3 (1941), 55-69. Zbl0063.07046MR5,175a
  13. [13] A. N. SINGH, On functions without one-sided derivatives II, Proc. Benares Math. Soc., 4 (1942), 95-108. Zbl0063.07047MR5,232e
  14. [14] W. H. YOUNG, On the derivates of non-differentiable functions, Messenger of Math., 38 (1908), 65-69. JFM39.0470.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.