Porosity and continuous, nowhere differentiable functions
Annales de la Faculté des sciences de Toulouse : Mathématiques (1993)
- Volume: 2, Issue: 1, page 5-14
- ISSN: 0240-2963
Access Full Article
topHow to cite
topAnisiu, Valeriu. "Porosity and continuous, nowhere differentiable functions." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.1 (1993): 5-14. <http://eudml.org/doc/73313>.
@article{Anisiu1993,
author = {Anisiu, Valeriu},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {porous set; -typical function; Banach space; continuous functions; nowhere differentiable functions},
language = {eng},
number = {1},
pages = {5-14},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Porosity and continuous, nowhere differentiable functions},
url = {http://eudml.org/doc/73313},
volume = {2},
year = {1993},
}
TY - JOUR
AU - Anisiu, Valeriu
TI - Porosity and continuous, nowhere differentiable functions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1993
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 1
SP - 5
EP - 14
LA - eng
KW - porous set; -typical function; Banach space; continuous functions; nowhere differentiable functions
UR - http://eudml.org/doc/73313
ER -
References
top- [1] Banach ( S.) .— Uber die Baire'sche Kategorie gewisser Funktionenmengen, Studia. Math.3 (1931), pp. 174-179. Zbl0003.29703JFM57.0305.05
- [2] Evans ( M.J.). — Approximate smoothness of continuous functions, Colloq. Math.54 (1987), 2, pp. 307-313. Zbl0653.26006MR948523
- [3] Hata ( M.) . — Singularities of the Weierstrass type functions, J. Analyse Math.51 (1988), pp. 62-90. Zbl0663.26004MR963150
- [4] Hata ( M.) . — On continuous functions with no unilateral derivatives, Ann. Inst. Fourier Grenoble38 (1988), 2, pp. 43-62. Zbl0641.26010MR949010
- [5] Maly ( J.). — Where the continuous functions without unilateral derivatives are typical, Trans. Amer. Math. Soc.283 (1984), 1, pp. 169-175. Zbl0514.26002MR735414
- [6] Mazurkiewicz ( S.). — Sur les fonctions non dérivables, Studia Math.3 (1931), pp. 92-94. Zbl0003.29702JFM57.0305.04
- [7] Preiss ( D.) and Zajicek ( L.). — Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc.91 (1984), 2, pp. 202-204. Zbl0521.46034MR740171
- [8] Saks ( S.) . — On the functions of Besicovitch in the space of continuous functions, Fund. Math.19 ( 1932), pp. 211-219. Zbl0005.39105JFM58.0256.03
- [9] Saks ( S.). — Theory of the integral, Warsaw, 1937. JFM63.0183.05
- [10] Thomson ( B. S.). — Real functions, Lecture Notes in Math. 1170, Springer1985. Zbl0581.26001MR818744
- [11] Zajicek ( L.) . — Sets of σ-porosity and sets of σ-porosity (q), Casopis Pest. Mat.101 (1976), pp. 350-359. Zbl0341.30026MR457731
- [12] Zajicek ( L.). — Porosity and σ-porosity, Real Anal. Exchange13 (1987-88), pp. 314-350. Zbl0666.26003MR943561
- [13] Zamifirescu ( T.). — How many sets are porous, Proc. Amer. Math. Soc.100 (1987), 2, pp. 383-387. Zbl0625.54036MR884484
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.