On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 1, page 193-206
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMarkl, Martin. "On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy." Annales de l'institut Fourier 39.1 (1989): 193-206. <http://eudml.org/doc/74824>.
@article{Markl1989,
abstract = {The problem of the characterization of graded Lie algebras which admit a realization as the homotopy Lie algebra of a space of type $F$ is discussed. The central results are formulated in terms of varieties of structure constants, several criterions for concrete algebras are also deduced.},
author = {Markl, Martin},
journal = {Annales de l'institut Fourier},
keywords = {finite dimensional rational graded Lie algebras; rational homotopy Lie algebra; structure constants of graded Lie algebras; strong arithmetic condition; space of type F; minimal model},
language = {eng},
number = {1},
pages = {193-206},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy},
url = {http://eudml.org/doc/74824},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Markl, Martin
TI - On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 1
SP - 193
EP - 206
AB - The problem of the characterization of graded Lie algebras which admit a realization as the homotopy Lie algebra of a space of type $F$ is discussed. The central results are formulated in terms of varieties of structure constants, several criterions for concrete algebras are also deduced.
LA - eng
KW - finite dimensional rational graded Lie algebras; rational homotopy Lie algebra; structure constants of graded Lie algebras; strong arithmetic condition; space of type F; minimal model
UR - http://eudml.org/doc/74824
ER -
References
top- [1] A. BOREL, Linear algebraic groups, W.A. Benjamin, New-York, 1969. Zbl0186.33201MR40 #4273
- [2] J.-B. FRIEDLANDER, S. HALPERIN, An arithmetic characterization of the rational homotopy groups of certain spaces, Inv. Math., 53 (1979), 117-133. Zbl0396.55010MR81f:55006b
- [3] S. HALPERIN, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. Zbl0364.55014MR57 #1493
- [4] S. HALPERIN, Spaces whose rational homology and ѱ-homotopy are both finite dimensional, Astérisque, 113-114 (1984), 198-205. Zbl0546.55015MR86a:55015
- [5] S. HALPERIN, The structure of π*(ΩS), Astérisque, 113-114, 109-117. Zbl0546.55014MR86b:55009
- [6] R. HARTSHORNE, Algebraic geometry, Springer, 1977. Zbl0367.14001MR57 #3116
- [7] J.-M. LEMAIRE, F. SIGRIST, Dénombrement de types d'homotopie rationnelle, C.R. Acad. Paris, Sér. A, 287 (1978), 109-112. Zbl0382.55005MR80b:55009
- [8] D. QUILLEN, Rational homotopy theory, Ann. Math., 90 (1969), 205-295. Zbl0191.53702MR41 #2678
- [9] P. SAMUEL, O. ZARISKI, Commutative algebra, Vol. I, Princeton N.J., Van Nostrand, 1958.
- [10] P. SAMUEL, O. ZARISKI, Commutative algebra, Vol. II, Princeton N.J., Van Nostrand, 1960. Zbl0121.27801
- [11] I.-R. SHAFAREVICH, Osnovy algebraicheskoj geometrii, Moskva, 1972. Zbl0258.14001
- [12] D. TANRÉ, Homotopie rationnelle : Modèles de Chen, Quillen, Sullivan, Lecture Notes in Math. 1025, Springer, 1983. Zbl0539.55001MR86b:55010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.