# An Arithmetic Characterization of the Rational Homotopy Groups of Certain Spaces.

John B. Friedlander; S. Halperin

Inventiones mathematicae (1979)

- Volume: 53, page 117-134
- ISSN: 0020-9910; 1432-1297/e

## Access Full Article

top## How to cite

topFriedlander, John B., and Halperin, S.. "An Arithmetic Characterization of the Rational Homotopy Groups of Certain Spaces.." Inventiones mathematicae 53 (1979): 117-134. <http://eudml.org/doc/142658>.

@article{Friedlander1979,

author = {Friedlander, John B., Halperin, S.},

journal = {Inventiones mathematicae},

keywords = {Rational Cohomology; Sullivan Theory of Minimal Models; Noetherian Ring; Poincare Polynomial; Krull Dimension; Zariski Topology; Lie Group; Spectral Sequen},

pages = {117-134},

title = {An Arithmetic Characterization of the Rational Homotopy Groups of Certain Spaces.},

url = {http://eudml.org/doc/142658},

volume = {53},

year = {1979},

}

TY - JOUR

AU - Friedlander, John B.

AU - Halperin, S.

TI - An Arithmetic Characterization of the Rational Homotopy Groups of Certain Spaces.

JO - Inventiones mathematicae

PY - 1979

VL - 53

SP - 117

EP - 134

KW - Rational Cohomology; Sullivan Theory of Minimal Models; Noetherian Ring; Poincare Polynomial; Krull Dimension; Zariski Topology; Lie Group; Spectral Sequen

UR - http://eudml.org/doc/142658

ER -

## Citations in EuDML Documents

top- Martin Markl, On the rational homotopy Lie algebra of spaces with finite dimensional rational cohomology and homotopy
- Yves Félix, Stephen Halperin, Jean-Claude Thomas, The homotopy Lie algebra for finite complexes
- Karsten Grove, Stephen Halperin, Contributions of rational homotopy theory to global problems in geometry
- Jean-Claude Thomas, Rational homotopy of Serre fibrations

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.