On deformations of holomorphic foliations
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 2, page 417-449
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGirbau, Joan, and Nicolau, Marcel. "On deformations of holomorphic foliations." Annales de l'institut Fourier 39.2 (1989): 417-449. <http://eudml.org/doc/74836>.
@article{Girbau1989,
abstract = {Given a non-singular holomorphic foliation $\{\cal F\}$ on a compact manifold $M$ we analyze the relationship between the versal spaces $K$ and $K^\{\rm tr\}$ of deformations of $\{\cal F\}$ as a holomorphic foliation and as a transversely holomorphic foliation respectively. With this purpose, we prove the existence of a versal unfolding of $\{\cal F\}$ parametrized by an analytic space $K^f$ isomorphic to $\pi ^\{-1\}(0)\times \Sigma $ where $\Sigma $ is smooth and $\pi $ : $K\rightarrow K^\{\rm tr\}$ is the forgetful map. The map $\pi $ is shown to be an epimorphism in two situations: (i) if $H^2(M,\Theta ^ f_\{\{\cal F\}\})=0$, where $\Theta ^ f_\{\{\cal F\}\}$ is the sheaf of germs of holomorphic vector fields tangent to $\{\cal F\}$, and (ii) if there exists a holomorphic foliation $\{\cal F\}^\pitchfork $ transverse and supplementary to $\{\cal F\}$. When the conditions (i) and (ii) are both fulfilled then $K\cong K^f\times K^\{\rm tr\}$.},
author = {Girbau, Joan, Nicolau, Marcel},
journal = {Annales de l'institut Fourier},
keywords = {holomorphic foliation; deformations; transversely holomorphic foliation},
language = {eng},
number = {2},
pages = {417-449},
publisher = {Association des Annales de l'Institut Fourier},
title = {On deformations of holomorphic foliations},
url = {http://eudml.org/doc/74836},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Girbau, Joan
AU - Nicolau, Marcel
TI - On deformations of holomorphic foliations
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 2
SP - 417
EP - 449
AB - Given a non-singular holomorphic foliation ${\cal F}$ on a compact manifold $M$ we analyze the relationship between the versal spaces $K$ and $K^{\rm tr}$ of deformations of ${\cal F}$ as a holomorphic foliation and as a transversely holomorphic foliation respectively. With this purpose, we prove the existence of a versal unfolding of ${\cal F}$ parametrized by an analytic space $K^f$ isomorphic to $\pi ^{-1}(0)\times \Sigma $ where $\Sigma $ is smooth and $\pi $ : $K\rightarrow K^{\rm tr}$ is the forgetful map. The map $\pi $ is shown to be an epimorphism in two situations: (i) if $H^2(M,\Theta ^ f_{{\cal F}})=0$, where $\Theta ^ f_{{\cal F}}$ is the sheaf of germs of holomorphic vector fields tangent to ${\cal F}$, and (ii) if there exists a holomorphic foliation ${\cal F}^\pitchfork $ transverse and supplementary to ${\cal F}$. When the conditions (i) and (ii) are both fulfilled then $K\cong K^f\times K^{\rm tr}$.
LA - eng
KW - holomorphic foliation; deformations; transversely holomorphic foliation
UR - http://eudml.org/doc/74836
ER -
References
top- [1] M. ARTIN, On the Solutions of Analytic Equations, Inventiones Math., 5 (1968), 277-291. Zbl0172.05301MR38 #344
- [2] J.-L. CATHELINEAU, Déformations équivariantes d'espaces analytiques complexes compacts, Ann. Sc. Ec. Norm. Sup., 11 (1978), 391-406. Zbl0401.32010MR80a:32018
- [3] A. DOUADY, Déformations régulières, Sém. M. Cartan, 13e année, (1960-1961), n° 3. Zbl0156.42802
- [4] A. DOUADY, Le problème des modules pour les variétés analytiques complexes, Sém. Bourbaki, 17e année (1964-1965), n° 277. Zbl0191.38002
- [5] A. DOUADY, Le problème des modules pour les sous-espaces analytiques compactes d'un espace analytique donné, Ann. Inst. Fourier, Grenoble, 16-1 (1966), 1-95. Zbl0146.31103MR34 #2940
- [6] A. DOUADY, Le problème des modules locaux pour les espaces ℂ-analytiques compacts, Ann. Sc. Ec. Norm. Sup., 7 (1974), 569-602. Zbl0313.32036MR52 #3611
- [7] T. DUCHAMP, M. KALKA, Deformation theory for holomorphic foliations, J. Diff. Geom., 14 (1979), 317-337. Zbl0451.57015MR82b:57019
- [8] T. DUCHAMP, M. KALKA, Holomorphic Foliations and Deformations of the Hopf foliation, Pacific J. of Math., 112 (1984), 69-81. Zbl0501.57010MR85m:57019
- [9] J. FRENKEL, Cohomologie non abélienne et espaces fibrés, Bull. Soc. Math. de France, 85 (1957), 135-220. Zbl0082.37702MR20 #4662
- [10] J. GIRBAU, A. HAEFLIGER, D. SUNDARARAMAN, On deformations of transversely holomorphic foliations, Journal für die reine and angew. Math., 345 (1983), 122-147. Zbl0538.32015MR84j:32026
- [11] J. GIRBAU, M. NICOLAU, Deformations of holomorphic foliations and transversely holomorphic foliations, Research Notes in Math., 131 (1985), 162-173. Zbl0648.57013MR88b:32047
- [12] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964. Zbl0080.16201
- [13] X. GOMEZ-MONT, Transverse Deformations of Holomorphic Foliations, Contemporary Math., 58, part I, 127-139. Zbl0607.32014MR88c:32033
- [14] A. HAEFLIGER, Deformations of Transversely Holomorphic Flows on Spheres and Deformations of Hopf Manifolds, Compositio Math., 55 (1985), 241-251. Zbl0582.32026MR87a:57032
- [15] G. R. KEMPF, Deformations of Symmetric Products. Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Studies, 97 (1981), 319-342. Zbl0465.14013MR82k:14023
- [16] K. KODAIRA, D. C. SPENCER, On deformation of Complex Analytic Structures. I and II, Ann. of Math., 67 (1958), 328-466. Zbl0128.16901MR22 #3009
- [17] K. KODAIRA, D. C. SPENCER, Multifoliate Structures, Ann. of Math., 74 (1961), 52-100. Zbl0123.16401MR26 #5595
- [18] M. KURANISHI, Deformations of Compact Complex Manifolds, Montreal, 1971. Zbl0382.32014MR50 #7588
- [19] B. MALGRANGE, Analytic Spaces. L'enseignement Math., t. XIV (1968), 1-28. Zbl0165.40501MR38 #6105
- [20] J. MORROW, K. KODAIRA, Complex Manifolds, New York, 1971. Zbl0325.32001MR46 #2080
- [21] L. NIRENBERG, A Complex Frobenius Theorem, Seminar of Analytic Functions, Inst. for Advanced Study, Princeton, (1957), 172-189. Zbl0099.37502
- [22] B. SHIFFMAN, A. J. SOMMESSE, Vanishing Theorems on Complex Manifolds, Progress in Math., Birkhäuser, Vol. 56 (1985). Zbl0578.32055MR86h:32048
- [23] J. J. WAVRIK, Obstructions to the existence of a Space of Moduli. Papers in Honour of K. Kodaira, Princeton Univ. Press, (1969), 403-414. Zbl0191.38003MR40 #8089
- [24] J. J. WAVRIK, A Theorem of Completenes for families of Compact Analytic Spaces, Trans. of the A.M.S., 163 (1972), 147-155. Zbl0205.38803MR45 #3770
- [25] J. WEHLER, Versal deformations of Hopf surfaces, Journal für die reine and angew. Math., 345 (1987), 122-147.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.