On deformations of holomorphic foliations

Joan Girbau; Marcel Nicolau

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 2, page 417-449
  • ISSN: 0373-0956

Abstract

top
Given a non-singular holomorphic foliation on a compact manifold M we analyze the relationship between the versal spaces K and K tr of deformations of as a holomorphic foliation and as a transversely holomorphic foliation respectively. With this purpose, we prove the existence of a versal unfolding of parametrized by an analytic space K f isomorphic to π - 1 ( 0 ) × Σ where Σ is smooth and π : K K tr is the forgetful map. The map π is shown to be an epimorphism in two situations: (i) if H 2 ( M , Θ f ) = 0 , where Θ f is the sheaf of germs of holomorphic vector fields tangent to , and (ii) if there exists a holomorphic foliation transverse and supplementary to . When the conditions (i) and (ii) are both fulfilled then K K f × K tr .

How to cite

top

Girbau, Joan, and Nicolau, Marcel. "On deformations of holomorphic foliations." Annales de l'institut Fourier 39.2 (1989): 417-449. <http://eudml.org/doc/74836>.

@article{Girbau1989,
abstract = {Given a non-singular holomorphic foliation $\{\cal F\}$ on a compact manifold $M$ we analyze the relationship between the versal spaces $K$ and $K^\{\rm tr\}$ of deformations of $\{\cal F\}$ as a holomorphic foliation and as a transversely holomorphic foliation respectively. With this purpose, we prove the existence of a versal unfolding of $\{\cal F\}$ parametrized by an analytic space $K^f$ isomorphic to $\pi ^\{-1\}(0)\times \Sigma $ where $\Sigma $ is smooth and $\pi $ : $K\rightarrow K^\{\rm tr\}$ is the forgetful map. The map $\pi $ is shown to be an epimorphism in two situations: (i) if $H^2(M,\Theta ^ f_\{\{\cal F\}\})=0$, where $\Theta ^ f_\{\{\cal F\}\}$ is the sheaf of germs of holomorphic vector fields tangent to $\{\cal F\}$, and (ii) if there exists a holomorphic foliation $\{\cal F\}^\pitchfork $ transverse and supplementary to $\{\cal F\}$. When the conditions (i) and (ii) are both fulfilled then $K\cong K^f\times K^\{\rm tr\}$.},
author = {Girbau, Joan, Nicolau, Marcel},
journal = {Annales de l'institut Fourier},
keywords = {holomorphic foliation; deformations; transversely holomorphic foliation},
language = {eng},
number = {2},
pages = {417-449},
publisher = {Association des Annales de l'Institut Fourier},
title = {On deformations of holomorphic foliations},
url = {http://eudml.org/doc/74836},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Girbau, Joan
AU - Nicolau, Marcel
TI - On deformations of holomorphic foliations
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 2
SP - 417
EP - 449
AB - Given a non-singular holomorphic foliation ${\cal F}$ on a compact manifold $M$ we analyze the relationship between the versal spaces $K$ and $K^{\rm tr}$ of deformations of ${\cal F}$ as a holomorphic foliation and as a transversely holomorphic foliation respectively. With this purpose, we prove the existence of a versal unfolding of ${\cal F}$ parametrized by an analytic space $K^f$ isomorphic to $\pi ^{-1}(0)\times \Sigma $ where $\Sigma $ is smooth and $\pi $ : $K\rightarrow K^{\rm tr}$ is the forgetful map. The map $\pi $ is shown to be an epimorphism in two situations: (i) if $H^2(M,\Theta ^ f_{{\cal F}})=0$, where $\Theta ^ f_{{\cal F}}$ is the sheaf of germs of holomorphic vector fields tangent to ${\cal F}$, and (ii) if there exists a holomorphic foliation ${\cal F}^\pitchfork $ transverse and supplementary to ${\cal F}$. When the conditions (i) and (ii) are both fulfilled then $K\cong K^f\times K^{\rm tr}$.
LA - eng
KW - holomorphic foliation; deformations; transversely holomorphic foliation
UR - http://eudml.org/doc/74836
ER -

References

top
  1. [1] M. ARTIN, On the Solutions of Analytic Equations, Inventiones Math., 5 (1968), 277-291. Zbl0172.05301MR38 #344
  2. [2] J.-L. CATHELINEAU, Déformations équivariantes d'espaces analytiques complexes compacts, Ann. Sc. Ec. Norm. Sup., 11 (1978), 391-406. Zbl0401.32010MR80a:32018
  3. [3] A. DOUADY, Déformations régulières, Sém. M. Cartan, 13e année, (1960-1961), n° 3. Zbl0156.42802
  4. [4] A. DOUADY, Le problème des modules pour les variétés analytiques complexes, Sém. Bourbaki, 17e année (1964-1965), n° 277. Zbl0191.38002
  5. [5] A. DOUADY, Le problème des modules pour les sous-espaces analytiques compactes d'un espace analytique donné, Ann. Inst. Fourier, Grenoble, 16-1 (1966), 1-95. Zbl0146.31103MR34 #2940
  6. [6] A. DOUADY, Le problème des modules locaux pour les espaces ℂ-analytiques compacts, Ann. Sc. Ec. Norm. Sup., 7 (1974), 569-602. Zbl0313.32036MR52 #3611
  7. [7] T. DUCHAMP, M. KALKA, Deformation theory for holomorphic foliations, J. Diff. Geom., 14 (1979), 317-337. Zbl0451.57015MR82b:57019
  8. [8] T. DUCHAMP, M. KALKA, Holomorphic Foliations and Deformations of the Hopf foliation, Pacific J. of Math., 112 (1984), 69-81. Zbl0501.57010MR85m:57019
  9. [9] J. FRENKEL, Cohomologie non abélienne et espaces fibrés, Bull. Soc. Math. de France, 85 (1957), 135-220. Zbl0082.37702MR20 #4662
  10. [10] J. GIRBAU, A. HAEFLIGER, D. SUNDARARAMAN, On deformations of transversely holomorphic foliations, Journal für die reine and angew. Math., 345 (1983), 122-147. Zbl0538.32015MR84j:32026
  11. [11] J. GIRBAU, M. NICOLAU, Deformations of holomorphic foliations and transversely holomorphic foliations, Research Notes in Math., 131 (1985), 162-173. Zbl0648.57013MR88b:32047
  12. [12] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964. Zbl0080.16201
  13. [13] X. GOMEZ-MONT, Transverse Deformations of Holomorphic Foliations, Contemporary Math., 58, part I, 127-139. Zbl0607.32014MR88c:32033
  14. [14] A. HAEFLIGER, Deformations of Transversely Holomorphic Flows on Spheres and Deformations of Hopf Manifolds, Compositio Math., 55 (1985), 241-251. Zbl0582.32026MR87a:57032
  15. [15] G. R. KEMPF, Deformations of Symmetric Products. Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Studies, 97 (1981), 319-342. Zbl0465.14013MR82k:14023
  16. [16] K. KODAIRA, D. C. SPENCER, On deformation of Complex Analytic Structures. I and II, Ann. of Math., 67 (1958), 328-466. Zbl0128.16901MR22 #3009
  17. [17] K. KODAIRA, D. C. SPENCER, Multifoliate Structures, Ann. of Math., 74 (1961), 52-100. Zbl0123.16401MR26 #5595
  18. [18] M. KURANISHI, Deformations of Compact Complex Manifolds, Montreal, 1971. Zbl0382.32014MR50 #7588
  19. [19] B. MALGRANGE, Analytic Spaces. L'enseignement Math., t. XIV (1968), 1-28. Zbl0165.40501MR38 #6105
  20. [20] J. MORROW, K. KODAIRA, Complex Manifolds, New York, 1971. Zbl0325.32001MR46 #2080
  21. [21] L. NIRENBERG, A Complex Frobenius Theorem, Seminar of Analytic Functions, Inst. for Advanced Study, Princeton, (1957), 172-189. Zbl0099.37502
  22. [22] B. SHIFFMAN, A. J. SOMMESSE, Vanishing Theorems on Complex Manifolds, Progress in Math., Birkhäuser, Vol. 56 (1985). Zbl0578.32055MR86h:32048
  23. [23] J. J. WAVRIK, Obstructions to the existence of a Space of Moduli. Papers in Honour of K. Kodaira, Princeton Univ. Press, (1969), 403-414. Zbl0191.38003MR40 #8089
  24. [24] J. J. WAVRIK, A Theorem of Completenes for families of Compact Analytic Spaces, Trans. of the A.M.S., 163 (1972), 147-155. Zbl0205.38803MR45 #3770
  25. [25] J. WEHLER, Versal deformations of Hopf surfaces, Journal für die reine and angew. Math., 345 (1987), 122-147. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.