Deformations of transversely holomorphic flows on spheres and deformations of hopf manifolds

A. Haefliger

Compositio Mathematica (1985)

  • Volume: 55, Issue: 2, page 241-251
  • ISSN: 0010-437X

How to cite

top

Haefliger, A.. "Deformations of transversely holomorphic flows on spheres and deformations of hopf manifolds." Compositio Mathematica 55.2 (1985): 241-251. <http://eudml.org/doc/89717>.

@article{Haefliger1985,
author = {Haefliger, A.},
journal = {Compositio Mathematica},
keywords = {resonant vector fields; Lie algebra of holomorphic vector fields; holomorphic flow; transversely holomorphic foliation; versal deformation; Hopf manifold},
language = {eng},
number = {2},
pages = {241-251},
publisher = {Martinus Nijhoff Publishers},
title = {Deformations of transversely holomorphic flows on spheres and deformations of hopf manifolds},
url = {http://eudml.org/doc/89717},
volume = {55},
year = {1985},
}

TY - JOUR
AU - Haefliger, A.
TI - Deformations of transversely holomorphic flows on spheres and deformations of hopf manifolds
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 2
SP - 241
EP - 251
LA - eng
KW - resonant vector fields; Lie algebra of holomorphic vector fields; holomorphic flow; transversely holomorphic foliation; versal deformation; Hopf manifold
UR - http://eudml.org/doc/89717
ER -

References

top
  1. [1] V. Arnold: Chapitres supplémentaires de la théorie des équations différentielles ordinaires. Moscou: Editions Mir (1980) traduction française. Zbl0455.34001MR626685
  2. [2] C. Borcea: Some remarks on deformations of Hopf manifolds. Rev. Roum. Math. pures et appl.26 (1981) 1287-1294. Zbl0543.32010MR646396
  3. [3] N. Brouchlinskaia: Finiteness theorem for familities of vector fields in the neighbourhood of a Poincaré-type singularity. Funct. Anal.5 (1971), english translation 177-181. Zbl0243.34008
  4. [4] A. Douady: Séminaire H. Cartan, exp. 3 (1960 -1961). 
  5. [5] T. Duchamp and M. Kalka, Deformation theory for holomorphic foliations. J. Diff. Geom.14 (1979) 317-337. Zbl0451.57015MR594704
  6. [6] T. Duchamp and M. Kalka: Holomorphic foliations and deformations of the Hopf foliation, preprint. Zbl0501.57010MR739141
  7. [7] J. Girbau, A. Haefliger and D. Sundararaman: On deformations of transversely holomorphic foliations, J. für die reine und ang. Math.345 (1983) 122-147. Zbl0538.32015MR717890
  8. [8] K. Kodaira and D.C. Spencer: On deformation of complex analytic structures, I, II, III. Ann. of Math.67 (1958) 328-466 and 71 (1960) 43-76. Zbl0128.16902MR112154
  9. [9] J. Wehler: Versal deformation of Hopf surfaces. J. für die reine und ang. Math.328 (1981) 22-32. Zbl0459.32009MR636192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.