Integrals for holomorphic foliations with singularities having all leaves compact

Xavier Gomez-Mont

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 2, page 451-458
  • ISSN: 0373-0956

Abstract

top
We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.

How to cite

top

Gomez-Mont, Xavier. "Integrals for holomorphic foliations with singularities having all leaves compact." Annales de l'institut Fourier 39.2 (1989): 451-458. <http://eudml.org/doc/74837>.

@article{Gomez1989,
abstract = {We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.},
author = {Gomez-Mont, Xavier},
journal = {Annales de l'institut Fourier},
keywords = {holomorphic foliation; quasiprojective},
language = {eng},
number = {2},
pages = {451-458},
publisher = {Association des Annales de l'Institut Fourier},
title = {Integrals for holomorphic foliations with singularities having all leaves compact},
url = {http://eudml.org/doc/74837},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Gomez-Mont, Xavier
TI - Integrals for holomorphic foliations with singularities having all leaves compact
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 2
SP - 451
EP - 458
AB - We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.
LA - eng
KW - holomorphic foliation; quasiprojective
UR - http://eudml.org/doc/74837
ER -

References

top
  1. [D] A. DOUADY, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier, 16-1 (1966), 1-95. Zbl0146.31103MR34 #2940
  2. [C.M.] D. CERVEAU, J.-F. MATTEI, Formes intégrables holomorphes singulières, Astérisque, 97 (1982). Zbl0545.32006MR86f:58006
  3. [E.M.S.] R. EDWARDS, K. MILLET, D. SULLIVAN, Foliations with all leaves compact, Topology, 16 (1977), 13-32. Zbl0356.57022MR55 #11268
  4. [E] D. EPSTEIN, Foliations with all leaves compact, Ann. Inst. Fourier, 26-1 (1976), 265-282. Zbl0313.57017MR54 #8664
  5. [F] A. FUJIKI, Closedness of the Douady spaces of compact Kaehler spaces, Publ. Math. RIMS, Kyoto U., 14 (1978). Zbl0409.32016MR58 #6361
  6. [G] A. GROTHENDIECK, Techniques de construction et théorèmes d'existence en Géométrie Algébrique IV : Les Schémas de Hilbert, Séminaire Bourbaki, Exp. 221 (1961), Benjamin, N.Y., 1975. Zbl0236.14003
  7. [G.D.] A. GROTHENDIECK, J. DIEUDONNÉ, Éléments de Géométrie Algébrique IV : Étude locale des schémas et de morphismes de schémas, Publ. Math. IHES, 28, 1966. Zbl0144.19904
  8. [H] R. HARTSHORNE, Algebraic Geometry, Springer Verlag, 1977. Zbl0367.14001MR57 #3116
  9. [Hi] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., 79 (1964), I : 109-203 ; II : 205-326. Zbl0122.38603MR33 #7333
  10. [R] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Actual. Scient. Ind., 1183 (1952). Zbl0049.12602MR14,1113a
  11. [Sh] I. SHAFAREVICH, Basic Algebraic Geometry, Springer Verlag, 1974. Zbl0284.14001MR51 #3163
  12. [S] G. STOLZENBERG, Volumes, Limits and Extensions of Analytic Varieties, LNM 19, Springer Verlag, 1966. Zbl0142.33801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.