Vector fields, invariant varieties and linear systems
- [1] IMPA, Estrada Dona Castorina, 110, Jardim Botanico, 22460-320 Rio de Janeiro (Brésil)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 5, page 1385-1405
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPereira, Jorge Vitório. "Vector fields, invariant varieties and linear systems." Annales de l’institut Fourier 51.5 (2001): 1385-1405. <http://eudml.org/doc/115951>.
@article{Pereira2001,
abstract = {We investigate the interplay between invariant varieties of vector fields and the
inflection locus of linear systems with respect to the vector field. Among the
consequences of such investigation we obtain a computational criterion for the existence
of rational first integrals of a given degree, bounds for the number of first integrals
on families of vector fields, and a generalization of Darboux's criteria. We also provide
a new proof of Gomez--Mont's result on foliations with all leaves algebraic.},
affiliation = {IMPA, Estrada Dona Castorina, 110, Jardim Botanico, 22460-320 Rio de Janeiro (Brésil)},
author = {Pereira, Jorge Vitório},
journal = {Annales de l’institut Fourier},
keywords = {holomorphic vector fields; linear systems; inflection points},
language = {eng},
number = {5},
pages = {1385-1405},
publisher = {Association des Annales de l'Institut Fourier},
title = {Vector fields, invariant varieties and linear systems},
url = {http://eudml.org/doc/115951},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Pereira, Jorge Vitório
TI - Vector fields, invariant varieties and linear systems
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 5
SP - 1385
EP - 1405
AB - We investigate the interplay between invariant varieties of vector fields and the
inflection locus of linear systems with respect to the vector field. Among the
consequences of such investigation we obtain a computational criterion for the existence
of rational first integrals of a given degree, bounds for the number of first integrals
on families of vector fields, and a generalization of Darboux's criteria. We also provide
a new proof of Gomez--Mont's result on foliations with all leaves algebraic.
LA - eng
KW - holomorphic vector fields; linear systems; inflection points
UR - http://eudml.org/doc/115951
ER -
References
top- V. I. Arnold, Remarks on the Extactic Points of Plane Curves, The Gelfand Mathematical Seminars (1993--95) Zbl0990.58026
- J. Artés, B. Grünbaum, J. Llibre, On the number of invariant straight lines for polynomial differential systems, Pacific Journal of Mathematics 184 (1998) Zbl0930.34022MR1628583
- A. Cayley, On the sextactic points of a plane curve, 341 (1865), Trans. Royal Soc. London CLV
- F. Cukierman, Determinant of complexes and higher Hessians, Mathematische Annalen 307 (1997) Zbl0870.14022MR1428872
- G. Fischer, Complex Analytic Geometry, 538 (1976), Springer Zbl0343.32002MR430286
- X. Gomez-Mont, Integrals for holomorphic foliations with singularities having all leaves compact, Ann. Inst. Fourier, Grenoble 39 (1989) Zbl0667.58052MR1017286
- J. P. Joaunolou, Équations de Pfaff algébriques, 708 (1979), Springer Zbl0477.58002MR537038
- A. Lins Neto, Some Examples for Poincaré and Painlevé Problems, (2000) Zbl1130.34301MR1914932
- A. Lins Neto, B. Scárdua, Folheações Algébricas Complexas, IMPA, 21 Colóquio Brasileiro de Matemática, Rio de Janeiro (1997)
- J.-M. Lion, Un critère de Darboux d'existence d'intégrale première pour les 1-formes différentielles analytiques, Boletim da Sociedade Brasileira de Matemática 31 (2000) Zbl0964.37028MR1785265
- J. LLibre, J. V. Pereira, Multiplicity of Algebraic Invariant Curves and Darboux Integrability, (2000)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.