Topological stability theorem for composite mappings
Annales de l'institut Fourier (1989)
- Volume: 39, Issue: 2, page 459-500
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNakai, Isao. "Topological stability theorem for composite mappings." Annales de l'institut Fourier 39.2 (1989): 459-500. <http://eudml.org/doc/74838>.
@article{Nakai1989,
abstract = {We prove that generic convergent diagrams of proper smooth mappings are topologically stable. In proving global properties of diagrams we propose a generalization of the concept of singularity for diagrams, and we establish the geometry of composite mappings.},
author = {Nakai, Isao},
journal = {Annales de l'institut Fourier},
keywords = {critical sets; stratification; topological stability; maximal; trees; -stability},
language = {eng},
number = {2},
pages = {459-500},
publisher = {Association des Annales de l'Institut Fourier},
title = {Topological stability theorem for composite mappings},
url = {http://eudml.org/doc/74838},
volume = {39},
year = {1989},
}
TY - JOUR
AU - Nakai, Isao
TI - Topological stability theorem for composite mappings
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 2
SP - 459
EP - 500
AB - We prove that generic convergent diagrams of proper smooth mappings are topologically stable. In proving global properties of diagrams we propose a generalization of the concept of singularity for diagrams, and we establish the geometry of composite mappings.
LA - eng
KW - critical sets; stratification; topological stability; maximal; trees; -stability
UR - http://eudml.org/doc/74838
ER -
References
top- [A] V. I. ARNOLD, Evolution of wave fronts and equivariant Morse lemma, Comm. Pure Appl. Math., 29 (1976), 557-582. Zbl0343.58003MR55 #9148
- [Ba1] N. A. BAAS, Structural stability of composed mappings I-III, Preprint, Princeton, 1974.
- [Ba2] N. A. BAAS, Hierarchical Systems, preprint, Univ. of Trondheim, 1976.
- [Ba3] N. A. BAAS, On stability of composed mappings, preprint.
- [Bu] M. A. BUCHNER, Stability of the cut locus in Dimension less than or Equal to 6, Invent. Math., Vol. 43-3 (1977), 199-233. Zbl0365.58010MR58 #2866
- [C] M. J. D. CARNEIRO, Singularities of envelopes of families of submanifolds in ℝN, Ann. Sc. Ec. Norm. Sup., 4e série, t. 1 (1983), 178-192. Zbl0525.58008MR85h:58023
- [Da] J. DAMON, Topological stability in the nice dimensions, Topology, 18 (1979), 129-142. Zbl0454.58003MR80h:58015
- [Du1] J.-P. DUFOUR, Sur la stabilité de diagrammes d'applications différentiables, Ann. Scient. Éc. Norm. Sup., 4e série, 10 (1977), 153-174. Zbl0354.58011
- [Du2] J.-P. DUFOUR, Triplets de fonctions et stabilité des enveloppes. C. R. Acad. Sci. Paris, Série I, t. 293 (16 nov. 1981), 509-512. Zbl0486.58005MR83j:58019
- [Du3] J.-P. DUFOUR, Familles de courbes planes différentiables, Topology, 22-4 (1983), 449-474. Zbl0521.58012MR84k:58034
- [Du4] J.-P. DUFOUR, Dynamique de multi-application du cercle, preprint.
- [F] T. FUKUDA, Local topological properties of differentiable mappings, Inv. Math., 65 (1981), 227-250. Zbl0499.58008MR84e:58010
- [GG] M. GOLUBITSKY, V. GUILLEMIN, Stable mappings and their singularities, Graduate Text in Math. 14, Springer-Verlag. Zbl0294.58004MR49 #6269
- [Gi] C. GIBSON et al., Topological stability of smooth mappings, Lecture notes in Math. 552, Springer, Berlin, 1976. Zbl0377.58006MR55 #9151
- [L-T] D. T. LÊ, B. TEISSIER, Report on the problem session, Proceedings of Symposia in Pure Math., Vol. 40 (1983), Part. 2. Zbl0514.14001MR84k:32002
- [M1] J. N. MATHER, Stability of C∞-mappings : II. Infinitesimal stability implies stability, Ann. of Math., 89 (1969), 259-291. Zbl0177.26002MR41 #4582
- [M2] J. N. MATHER, Stability of C∞-mappings : V. Transversality. Advances in Mathematics, 192 (1971), 207-255.
- [M3] J. N. MATHER, The nice dimensions, Springer Lecture notes in Math, 192 (1971), 207-253. Zbl0211.56105MR45 #2747
- [M4] J. N. MATHER, Stratification and mappings. Proc. Conference on Dynamical Systems (e.g. M. M. Peixoto, Academic Press, 1973), pp. 195-232. Zbl0286.58003MR51 #4306
- [N1] I. NAKAI, C∞-stability and the I-equivalence of diagrams of smooth mappings, Preprint Liverpool University, 1986.
- [N2] I. NAKAI, Nice dimensions for the I0 equivalence of diagrams of map germs, Preprint Liverpool University, 1986. To appear in Pacific Journal of Math. Zbl0721.58008
- [P] A. DU PLESSIS, Genericity and smooth finite determinacy, pp. 295-312 in "Singularities", Proc. AMS Symp. in Pure Maths., Vol. 40 Part 1 (ed. P. Orlik), Amer Math. Soc. (1983). Zbl0523.58009MR85c:58016
- [Te] B. TEISSIER, The hunting of invariants in the geometry of discriminants, Real and complex singularities (ed. P. Holm, Sijthoff and Noordhoff, 1976), 556-677.
- [To] J. TOUGERON, Idéaux des fonctions différentiables, Ergebnisse, Band 71, Springer-Verlag, 1972. Zbl0251.58001MR55 #13472
- [Th] R. THOM, Sur la théorie des enveloppes, J. Math. Pure et Appl., t. XL, fasc. 2 (1962). Zbl0105.16102MR25 #4454
- [W1] C. T. C. WALL, Stability, Pencils and Polytopes, Bull. London Math. Soc., 12 (1980), 401-421. Zbl0433.58006MR82h:58009
- [W2] C. T. C. WALL, Finite determinacy of smooth map germs, Bull. London Math. Soc., 13 (1981), 481-539. Zbl0451.58009MR83i:58020
- [W3] C. T. C. WALL, Determination of the semi-nice dimensions, Math. Proc. Cambridge Philoc. Soc., 97-1 (1983), 12, 79-88. Zbl0568.58008MR86c:58011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.