Singularities of envelopes of families of submanifolds in N

Mário Jorge Dias Carneiro

Annales scientifiques de l'École Normale Supérieure (1983)

  • Volume: 16, Issue: 2, page 173-192
  • ISSN: 0012-9593

How to cite

top

Carneiro, Mário Jorge Dias. "Singularities of envelopes of families of submanifolds in $\mathbb {R}^N$." Annales scientifiques de l'École Normale Supérieure 16.2 (1983): 173-192. <http://eudml.org/doc/82114>.

@article{Carneiro1983,
author = {Carneiro, Mário Jorge Dias},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {stability of diagrams of mappings; generic germs; fold singularity; diagram of map germ; weak equivalence; right-left stable},
language = {eng},
number = {2},
pages = {173-192},
publisher = {Elsevier},
title = {Singularities of envelopes of families of submanifolds in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/82114},
volume = {16},
year = {1983},
}

TY - JOUR
AU - Carneiro, Mário Jorge Dias
TI - Singularities of envelopes of families of submanifolds in $\mathbb {R}^N$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1983
PB - Elsevier
VL - 16
IS - 2
SP - 173
EP - 192
LA - eng
KW - stability of diagrams of mappings; generic germs; fold singularity; diagram of map germ; weak equivalence; right-left stable
UR - http://eudml.org/doc/82114
ER -

References

top
  1. [1] V. I. ARNOLD, Wave Front Evolution and Equivariant Morse Lemma (Comm. on Pure and Applied Math., Vol. XXIX, 1976, pp. 557-582). Zbl0343.58003MR55 #9148
  2. [2] W. BLASCHKE, Topological Questions of Differential Geometry (Mimmeographed Notes, University of Chicago 1932). 
  3. [3] W. BLASCHKE, Geometrie der Gewebe, Springer-Verlag, Balin, 1938. Zbl0020.06701JFM64.0727.03
  4. [4] G. E. BREDON, Introduction to Compact Transformation Group, Academic Press, 1972. Zbl0246.57017MR54 #1265
  5. [5] V. G. BOLTYANSKII, Envelopes, Pergamon Press, Macmillan, New York, 1964. Zbl0126.37102MR31 #2438
  6. [6] M. J. D. CARNEIRO, On the Envelope Theory (Thesis, Princeton University, 1980). 
  7. [7] S. CHERN and P. GRIFFITHS, Abel's Theorem and Webs, Jahusbericht der Deutschen Mathematiker Vereinigung, Vol. 80, 1978, pp. 13-110. Zbl0386.14002MR80b:53008
  8. [8] J. P. DUFOUR, Diagrammes d'applications differentiables (Thèse, Université du Languedoc, 1979). 
  9. [9] J. P. DUFOUR, Sur la stabilité des diagrammes d'applications differentiables, (Ann. scient. Éc. Norm. Sup., 4e série, t. 10, 1977, pp. 153-174). Zbl0354.58011MR56 #6702
  10. [10] J. P. DUFOUR, Triplets de fonctions et stabilité des enveloppes, preprint, 1981. Zbl0486.58005MR83j:58019
  11. [11] G. GLAESER, Fonctions composées différentiables (Annals of Mathematics, Vol. 77, N° 1, January 1963, pp. 193-208). Zbl0106.31302MR26 #624
  12. [12] M. GOLUBITSKY and V. GUILLEMIN, Stable Mappings and Their Singularities, (G.T.M., Springer-Verlag, 1973). Zbl0294.58004MR49 #6269
  13. [13] G. JULIA, Cours de géometrie infinitesimal, Gauthier-Villars, Paris, 1953. 
  14. [14] J. N. MATHER, Stability of C∞ Mappings II : Infinitesimal Stability Implies Stability (Ann. Math., Vol. 89, 1969, pp. 254-291). Zbl0177.26002MR41 #4582
  15. [15] J. N. MATHER, Stability of C∞ Mappings III : Finitely Determined Map Germs (I.H.E.S., Publications Mathematiques, No. 35, 1968). Zbl0159.25001MR43 #1215a
  16. [16] V. PŒNARU, Singularities C∞ in Presence de Symmetrie, Springer-Verlag (Lecture Notes, Berlin, 1976). 
  17. [17] S. STERNBERG, Local Cn Transformations of the Real Line (Duke Math. J., Vol. 24, 1957, pp. 97-112). Zbl0077.06201MR21 #1371
  18. [18] R. THOM, Sur la theorie des enveloppes (J. Math. pure et appl. T. XLI, fasc. 2, 1962). Zbl0105.16102MR25 #4454

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.