Irregularities of continuous distributions

Michael Drmota

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 3, page 501-527
  • ISSN: 0373-0956

Abstract

top
This paper deals with a continuous analogon to irregularities of point distributions. If a continuous fonction x : [ 0 , 1 ] X where X is a compact body, is interpreted as a particle’s movement in time, then the discrepancy measures the difference between the particle’s stay in a proper subset and the volume of the subset. The essential part of this paper is to give lower bounds for the discrepancy in terms of the arc length of x ( t ) , 0 t 1 . Furthermore it is shown that these estimates are the best possible despite of logarithmic factors.

How to cite

top

Drmota, Michael. "Irregularities of continuous distributions." Annales de l'institut Fourier 39.3 (1989): 501-527. <http://eudml.org/doc/74839>.

@article{Drmota1989,
abstract = {This paper deals with a continuous analogon to irregularities of point distributions. If a continuous fonction $x: [0,1]\rightarrow X$ where $X$ is a compact body, is interpreted as a particle’s movement in time, then the discrepancy measures the difference between the particle’s stay in a proper subset and the volume of the subset. The essential part of this paper is to give lower bounds for the discrepancy in terms of the arc length of $x(t)$, $0\le t\le 1$. Furthermore it is shown that these estimates are the best possible despite of logarithmic factors.},
author = {Drmota, Michael},
journal = {Annales de l'institut Fourier},
keywords = {uniform distribution; uniformly distributed functions; irregularities of point distributions; discrepancy; Beck's Fourier transform method},
language = {eng},
number = {3},
pages = {501-527},
publisher = {Association des Annales de l'Institut Fourier},
title = {Irregularities of continuous distributions},
url = {http://eudml.org/doc/74839},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Drmota, Michael
TI - Irregularities of continuous distributions
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 3
SP - 501
EP - 527
AB - This paper deals with a continuous analogon to irregularities of point distributions. If a continuous fonction $x: [0,1]\rightarrow X$ where $X$ is a compact body, is interpreted as a particle’s movement in time, then the discrepancy measures the difference between the particle’s stay in a proper subset and the volume of the subset. The essential part of this paper is to give lower bounds for the discrepancy in terms of the arc length of $x(t)$, $0\le t\le 1$. Furthermore it is shown that these estimates are the best possible despite of logarithmic factors.
LA - eng
KW - uniform distribution; uniformly distributed functions; irregularities of point distributions; discrepancy; Beck's Fourier transform method
UR - http://eudml.org/doc/74839
ER -

References

top
  1. [1] J. BECK, On a problem of K.F. Roth concerning irregularities of point distribution, Invent. Math., 74 (1980), 477-487. Zbl0528.10037MR85g:11063
  2. [2] J. BECK and W. CHEN, Irregularities of distribution, Cambridge University Press, Cambridge-New York, 1987. Zbl0617.10039MR88m:11061
  3. [3] M. DRMOTA, An optimal lower bound for the discrepancy of C-uniformly distributed functions modulo 1, Indag. Math. (1), 50 (1988), 21-28. Zbl0642.10048MR89c:11114
  4. [4] M. DRMOTA, Untere Schranken für die C-Diskrepanz, Österr. Akad. Wiss., Math. Naturw. K1. SB II, 196 (1987), 107-117. Zbl0658.10054MR90a:11093
  5. [5] M. DRMOTA and R.F. TICHY, C-uniform distribution on compact metric spaces, J. Math. Analysis & Appl. (1), 129 (1988), 284-292. Zbl0639.10034MR89a:11078
  6. [6] M. DRMOTA and R.F. TICHY, Distribution properties of continuous curves, in: Théorie des nombres, Comptes Rendus de la Conférence internationale de Théorie des nombres tenue à l'Université Laval en 1987 (J.M. De Koninck, C. Levesque eds.), de Gruyter, Berlin - New York, 1989, 117-127. Zbl0679.10041MR90j:11081
  7. [7] E. HLAWKA, Über C-Gleichverteilung, Ann. Mat. Pura Appl. (IV), 49 (1960), 311-366. Zbl0091.04703MR22 #7996
  8. [8] K.F. ROTH, On irregularities of distribution, Mathematika, 1 (1954), 73-79. Zbl0057.28604MR16,575c
  9. [9] W.M. SCHMIDT, Irregularities of distribution IV, Invent. Math., 7 (1969), 55-82. Zbl0172.06402MR39 #6838
  10. [10] R.J. TASCHNER, The discrepancy of C-uniformly distributed multidimensional functions, J. Math. Analysis and Appl. (2), 78 (1980), 400-404. Zbl0468.10029MR82h:10064
  11. [11] R.F. TICHY, Konvexe Mengen auf speziellen Mannigfaltigkeiten, Proc. 3. Kolloquium über Diskrete Geometrie (1985), 263-275. Zbl0554.52001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.