On riemannian foliations with minimal leaves

Jesús A. Alvarez Lopez

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 1, page 163-176
  • ISSN: 0373-0956

Abstract

top
For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is 2 , a simple characterization of this geometrical property is proved.

How to cite

top

Lopez, Jesús A. Alvarez. "On riemannian foliations with minimal leaves." Annales de l'institut Fourier 40.1 (1990): 163-176. <http://eudml.org/doc/74869>.

@article{Lopez1990,
abstract = {For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is $\le 2$, a simple characterization of this geometrical property is proved.},
author = {Lopez, Jesús A. Alvarez},
journal = {Annales de l'institut Fourier},
keywords = {codimension 2 foliation; codimension 1 foliation; minimal leaves; Riemannian foliation; spectral sequence; bundle-like metric},
language = {eng},
number = {1},
pages = {163-176},
publisher = {Association des Annales de l'Institut Fourier},
title = {On riemannian foliations with minimal leaves},
url = {http://eudml.org/doc/74869},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Lopez, Jesús A. Alvarez
TI - On riemannian foliations with minimal leaves
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 163
EP - 176
AB - For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is $\le 2$, a simple characterization of this geometrical property is proved.
LA - eng
KW - codimension 2 foliation; codimension 1 foliation; minimal leaves; Riemannian foliation; spectral sequence; bundle-like metric
UR - http://eudml.org/doc/74869
ER -

References

top
  1. [1] J.A. ALVAREZ LÓPEZ, A finiteness theorem for the spectral sequence of a Riemannian foliation, Illinois J. of Math., 33 (1989), 79-92. Zbl0644.57014MR89m:53050
  2. [2] J.A. ALVAREZ LÓPEZ, Duality in the spectral sequence of Riemannian foliations, American J. of Math., 111 (1989), 905-926. Zbl0685.57017MR90k:58004
  3. [3] J.A. ALVAREZ LÓPEZ, A decomposition theorem for the spectral sequence of Lie foliations, to appear. Zbl0756.57016
  4. [4] R. BOTT, L.W. TU, Differential Forms in Algebraic Topology, GTM N° 82, Springer-Verlag, 1982. Zbl0496.55001MR83i:57016
  5. [5] Y. CARRIÈRE, Flots riemanniens, Astérisque, 116 (1984), 31-52. Zbl0548.58033MR86m:58125a
  6. [6] Y. CARRIÈRE, Feuilletages riemanniens à croissance polynomiale, Comm. Math. Helv., 63 (1988), 1-20. Zbl0661.53022MR89a:57033
  7. [7] A. EL KACIMI, G. HECTOR, Décomposition de Hodge basique pour un feuilletage riemannien, Ann. Inst. Fourier, 36-3 (1986), 207-227. Zbl0586.57015MR87m:57029
  8. [8] A. EL KACIMI, G. HECTOR, V. SERGIESCU, La cohomologie basique d'un feuilletage riemannien est de dimension finie, Math. Z., 188 (1985), 593-599. Zbl0536.57013
  9. [9] E. GHYS, Riemannian Foliations : Examples and Problems, Appendix E of Riemannian Foliations (by P. Molino), Birkhäuser, 1988, 297-314. 
  10. [10] W. GREUB, S. HALPERIN, R. VANSTONE, Connections, curvature and cohomology, Academic Press, 1973-1975. Zbl0372.57001
  11. [11] A. HAEFLIGER, Some remarks on foliations with minimal leaves, J. Diff. Geom., 15 (1980), 269-284. Zbl0444.57016MR82j:57027
  12. [12] A. HAEFLIGER, Pseudogroups of local isometries, Res. Notes in Math., 131 (1985), 174-197. Zbl0656.58042MR88i:58174
  13. [13] G. HECTOR, Cohomologies transversales des feuilletages riemanniens, Sém. Sud-Rhod., VII/2, Travaux en Cours, Hermann, 1987. Zbl0666.57022
  14. [14] F. KAMBER, Ph. TONDEUR, Duality for Riemannian foliations, Proc. Symp. Pure Math., 40/1 (1983), 609-618. Zbl0523.57019MR85e:57030
  15. [15] F. KAMBER, Ph. TONDEUR, Foliations and metrics, Progr. in Math., 32 (1983), 103-152. Zbl0542.53022MR85a:57017
  16. [16] E. MACÍAS, Las cohomologías diferenciable, continua y discreta de una variedad foliada, Publ. do Dpto. de Xeometría e Topoloxía n° 60, Santiago de Compostela, 1983. 
  17. [17] X. MASA, Cohomology of Lie foliations, Res. Notes in Math., 131 (1985), 211-214. Zbl0646.57016MR88f:57045
  18. [18] P. MOLINO, Géométrie globale des feuilletages riemanniens, Proc. Kon. Ned. Akad., A1, 85 (1982), 45-76. Zbl0516.57016MR84j:53043
  19. [19] P. MOLINO, V. SERGIESCU, Deux remarques sur les flots riemanniens, Manuscripta Math., 51 (1985), 145-161. Zbl0585.53026MR86h:53035
  20. [20] B. REINHART, Foliated manifolds with bundle-like metrics, Ann. Math., 69 (1959), 119-132. Zbl0122.16604MR21 #6004
  21. [21] H. RUMMLER, Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compactes, Comm. Math. Helv., 54 (1979), 224-239. Zbl0409.57026MR80m:57021
  22. [22] K.S. SARKARIA, A finiteness theorem for foliated manifolds, J. Math. Soc. Japan, Vol. 30, N° 4 (1978), 687-696. Zbl0398.57012MR80a:57014
  23. [23] V. SERGIESCU, Sur la suite spectrale d'un feuilletage riemannien, Lille, 1986. Zbl0673.53021
  24. [24] D. SULLIVAN, A cohomological characterization of foliations consisting of minimal surfaces, Com. Math. Helv., 54 (1979), 218-223. Zbl0409.57025MR80m:57022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.