On riemannian foliations with minimal leaves
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 1, page 163-176
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLopez, Jesús A. Alvarez. "On riemannian foliations with minimal leaves." Annales de l'institut Fourier 40.1 (1990): 163-176. <http://eudml.org/doc/74869>.
@article{Lopez1990,
abstract = {For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is $\le 2$, a simple characterization of this geometrical property is proved.},
author = {Lopez, Jesús A. Alvarez},
journal = {Annales de l'institut Fourier},
keywords = {codimension 2 foliation; codimension 1 foliation; minimal leaves; Riemannian foliation; spectral sequence; bundle-like metric},
language = {eng},
number = {1},
pages = {163-176},
publisher = {Association des Annales de l'Institut Fourier},
title = {On riemannian foliations with minimal leaves},
url = {http://eudml.org/doc/74869},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Lopez, Jesús A. Alvarez
TI - On riemannian foliations with minimal leaves
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 1
SP - 163
EP - 176
AB - For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is $\le 2$, a simple characterization of this geometrical property is proved.
LA - eng
KW - codimension 2 foliation; codimension 1 foliation; minimal leaves; Riemannian foliation; spectral sequence; bundle-like metric
UR - http://eudml.org/doc/74869
ER -
References
top- [1] J.A. ALVAREZ LÓPEZ, A finiteness theorem for the spectral sequence of a Riemannian foliation, Illinois J. of Math., 33 (1989), 79-92. Zbl0644.57014MR89m:53050
- [2] J.A. ALVAREZ LÓPEZ, Duality in the spectral sequence of Riemannian foliations, American J. of Math., 111 (1989), 905-926. Zbl0685.57017MR90k:58004
- [3] J.A. ALVAREZ LÓPEZ, A decomposition theorem for the spectral sequence of Lie foliations, to appear. Zbl0756.57016
- [4] R. BOTT, L.W. TU, Differential Forms in Algebraic Topology, GTM N° 82, Springer-Verlag, 1982. Zbl0496.55001MR83i:57016
- [5] Y. CARRIÈRE, Flots riemanniens, Astérisque, 116 (1984), 31-52. Zbl0548.58033MR86m:58125a
- [6] Y. CARRIÈRE, Feuilletages riemanniens à croissance polynomiale, Comm. Math. Helv., 63 (1988), 1-20. Zbl0661.53022MR89a:57033
- [7] A. EL KACIMI, G. HECTOR, Décomposition de Hodge basique pour un feuilletage riemannien, Ann. Inst. Fourier, 36-3 (1986), 207-227. Zbl0586.57015MR87m:57029
- [8] A. EL KACIMI, G. HECTOR, V. SERGIESCU, La cohomologie basique d'un feuilletage riemannien est de dimension finie, Math. Z., 188 (1985), 593-599. Zbl0536.57013
- [9] E. GHYS, Riemannian Foliations : Examples and Problems, Appendix E of Riemannian Foliations (by P. Molino), Birkhäuser, 1988, 297-314.
- [10] W. GREUB, S. HALPERIN, R. VANSTONE, Connections, curvature and cohomology, Academic Press, 1973-1975. Zbl0372.57001
- [11] A. HAEFLIGER, Some remarks on foliations with minimal leaves, J. Diff. Geom., 15 (1980), 269-284. Zbl0444.57016MR82j:57027
- [12] A. HAEFLIGER, Pseudogroups of local isometries, Res. Notes in Math., 131 (1985), 174-197. Zbl0656.58042MR88i:58174
- [13] G. HECTOR, Cohomologies transversales des feuilletages riemanniens, Sém. Sud-Rhod., VII/2, Travaux en Cours, Hermann, 1987. Zbl0666.57022
- [14] F. KAMBER, Ph. TONDEUR, Duality for Riemannian foliations, Proc. Symp. Pure Math., 40/1 (1983), 609-618. Zbl0523.57019MR85e:57030
- [15] F. KAMBER, Ph. TONDEUR, Foliations and metrics, Progr. in Math., 32 (1983), 103-152. Zbl0542.53022MR85a:57017
- [16] E. MACÍAS, Las cohomologías diferenciable, continua y discreta de una variedad foliada, Publ. do Dpto. de Xeometría e Topoloxía n° 60, Santiago de Compostela, 1983.
- [17] X. MASA, Cohomology of Lie foliations, Res. Notes in Math., 131 (1985), 211-214. Zbl0646.57016MR88f:57045
- [18] P. MOLINO, Géométrie globale des feuilletages riemanniens, Proc. Kon. Ned. Akad., A1, 85 (1982), 45-76. Zbl0516.57016MR84j:53043
- [19] P. MOLINO, V. SERGIESCU, Deux remarques sur les flots riemanniens, Manuscripta Math., 51 (1985), 145-161. Zbl0585.53026MR86h:53035
- [20] B. REINHART, Foliated manifolds with bundle-like metrics, Ann. Math., 69 (1959), 119-132. Zbl0122.16604MR21 #6004
- [21] H. RUMMLER, Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compactes, Comm. Math. Helv., 54 (1979), 224-239. Zbl0409.57026MR80m:57021
- [22] K.S. SARKARIA, A finiteness theorem for foliated manifolds, J. Math. Soc. Japan, Vol. 30, N° 4 (1978), 687-696. Zbl0398.57012MR80a:57014
- [23] V. SERGIESCU, Sur la suite spectrale d'un feuilletage riemannien, Lille, 1986. Zbl0673.53021
- [24] D. SULLIVAN, A cohomological characterization of foliations consisting of minimal surfaces, Com. Math. Helv., 54 (1979), 218-223. Zbl0409.57025MR80m:57022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.