On the generic spectrum of a riemannian cover

Steven Zelditch

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 2, page 407-442
  • ISSN: 0373-0956

Abstract

top
Let M be a compact manifold let G be a finite group acting freely on M , and let G be the (Fréchet) space of G -invariant metric on M . A natural conjecture is that, for a generic metric in G , all eigenspaces of the Laplacian are irreducible (as orthogonal representations of G ). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim M dim V for all irreducibles V of G . As an application, we construct isospectral manifolds with simple eigenvalue spectra.

How to cite

top

Zelditch, Steven. "On the generic spectrum of a riemannian cover." Annales de l'institut Fourier 40.2 (1990): 407-442. <http://eudml.org/doc/74883>.

@article{Zelditch1990,
abstract = {Let $M$ be a compact manifold let $G$ be a finite group acting freely on $M$, and let $\{\cal M\}_G$ be the (Fréchet) space of $G$-invariant metric on $M$. A natural conjecture is that, for a generic metric in $\{\cal M\}_G$, all eigenspaces of the Laplacian are irreducible (as orthogonal representations of $G$). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim$M\ge $ dim$V$ for all irreducibles $V$ of $G$. As an application, we construct isospectral manifolds with simple eigenvalue spectra.},
author = {Zelditch, Steven},
journal = {Annales de l'institut Fourier},
keywords = {generic spectrum; isospectral manifolds; multiplicity free representation; normal Riemannian cover; Laplacian},
language = {eng},
number = {2},
pages = {407-442},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the generic spectrum of a riemannian cover},
url = {http://eudml.org/doc/74883},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Zelditch, Steven
TI - On the generic spectrum of a riemannian cover
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 2
SP - 407
EP - 442
AB - Let $M$ be a compact manifold let $G$ be a finite group acting freely on $M$, and let ${\cal M}_G$ be the (Fréchet) space of $G$-invariant metric on $M$. A natural conjecture is that, for a generic metric in ${\cal M}_G$, all eigenspaces of the Laplacian are irreducible (as orthogonal representations of $G$). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim$M\ge $ dim$V$ for all irreducibles $V$ of $G$. As an application, we construct isospectral manifolds with simple eigenvalue spectra.
LA - eng
KW - generic spectrum; isospectral manifolds; multiplicity free representation; normal Riemannian cover; Laplacian
UR - http://eudml.org/doc/74883
ER -

References

top
  1. [Al] J. H. ALBERT, Generic properties of eigenfunctions of elliptic partial differential equations, Trans. Am. Math. Soc., 238 (1978), 341-354. Zbl0379.35023MR57 #10743
  2. [Ad] J. F. ADAMS, Lectures on Lie Groups, Univ. Chicago Press, 1969. Zbl0206.31604MR40 #5780
  3. [Ar] V. I. ARNOLD, Modes and Quasimodes, Fun. Anal. and App., 6 (1972), 44. Zbl0251.70012MR45 #6331
  4. [BaUr] S. BANDO and H. URAKAWA, Generic properties of the eigenvalues of the Laplacian for compact riemannian manifolds, Tôhoku Math. J., 35 (1983), 155-172. 
  5. [Be1] G. BESSON, On the multiplicity of eigenvalues of the Laplacian, SLN 1339, Springer-Verlag, (1988), 32-53. Zbl0708.53040MR90b:58264
  6. [Be2] G. BESSON, Propriétés génériques des fonctions propres et multiplicités, preprint (1989). Zbl0697.58056MR90k:58226
  7. [B1Wi1] D. D. BLEECKER and L. C. WILSON, Splitting the spectrum of a Riemannian manifold, SIAM J. Math. Anal., 11 (5) (1980), 813-818. Zbl0449.58021MR81j:58077
  8. [BröT-D] T. BRÖCKER and T. TOM DIECK, Representations of Compact Lie Groups, Grad. Texts, Springer-Verlag, 98 (1985). Zbl0581.22009MR86i:22023
  9. [Bro] R. BROOKS, Constructing isospectral manifolds, Am. Math. Monthly, 95 (1988), 823-839. Zbl0673.58046MR89k:58285
  10. [D] H. DONNELLY, G-spaces, the asymptotic splitting of L2(M) into irreducibles, Math. Ann., 237 (1978), 23-40. Zbl0379.53019MR80b:58063
  11. [H] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985. Zbl0601.35001
  12. [K] A. A. KIRILLOV, Elements of the Theory of Representations, Springer-Verlag, 1976. Zbl0342.22001MR54 #447
  13. [PSa] R. PHILLIPS and P. SARNAK, The Weyl theorem and the deformation of discrete groups, Comm. P.A.M., 38 (1985), 853-866. Zbl0614.10027MR87f:11035
  14. [SeT] H. SEIFERT and W. THRELFALL, A textbook of topology, Academic Press, 1980. Zbl0469.55001
  15. [Su] SUNADA T., Riemannian coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186. Zbl0585.58047MR86h:58141
  16. [U] K. UHLENBECK, Generic properties of eigenfunctions, Amer. J. Math., 98 (1976), 1059-1078. Zbl0355.58017MR57 #4264
  17. [Wig] E. P. WIGNER, Group Theory and its Applications to the Quantum, Mechanics of Atomic Spectra, Academic Press, 1959. Zbl0085.37905
  18. [Z] S. ZELDITCH, Isospectrality in the category of Fourier integral operators I, preprint (1990). Zbl0769.53026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.