On the generic spectrum of a riemannian cover
Annales de l'institut Fourier (1990)
- Volume: 40, Issue: 2, page 407-442
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topZelditch, Steven. "On the generic spectrum of a riemannian cover." Annales de l'institut Fourier 40.2 (1990): 407-442. <http://eudml.org/doc/74883>.
@article{Zelditch1990,
abstract = {Let $M$ be a compact manifold let $G$ be a finite group acting freely on $M$, and let $\{\cal M\}_G$ be the (Fréchet) space of $G$-invariant metric on $M$. A natural conjecture is that, for a generic metric in $\{\cal M\}_G$, all eigenspaces of the Laplacian are irreducible (as orthogonal representations of $G$). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim$M\ge $ dim$V$ for all irreducibles $V$ of $G$. As an application, we construct isospectral manifolds with simple eigenvalue spectra.},
author = {Zelditch, Steven},
journal = {Annales de l'institut Fourier},
keywords = {generic spectrum; isospectral manifolds; multiplicity free representation; normal Riemannian cover; Laplacian},
language = {eng},
number = {2},
pages = {407-442},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the generic spectrum of a riemannian cover},
url = {http://eudml.org/doc/74883},
volume = {40},
year = {1990},
}
TY - JOUR
AU - Zelditch, Steven
TI - On the generic spectrum of a riemannian cover
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 2
SP - 407
EP - 442
AB - Let $M$ be a compact manifold let $G$ be a finite group acting freely on $M$, and let ${\cal M}_G$ be the (Fréchet) space of $G$-invariant metric on $M$. A natural conjecture is that, for a generic metric in ${\cal M}_G$, all eigenspaces of the Laplacian are irreducible (as orthogonal representations of $G$). In physics terminology, no “accidental degeneracies” occur generically. We will prove this conjecture when dim$M\ge $ dim$V$ for all irreducibles $V$ of $G$. As an application, we construct isospectral manifolds with simple eigenvalue spectra.
LA - eng
KW - generic spectrum; isospectral manifolds; multiplicity free representation; normal Riemannian cover; Laplacian
UR - http://eudml.org/doc/74883
ER -
References
top- [Al] J. H. ALBERT, Generic properties of eigenfunctions of elliptic partial differential equations, Trans. Am. Math. Soc., 238 (1978), 341-354. Zbl0379.35023MR57 #10743
- [Ad] J. F. ADAMS, Lectures on Lie Groups, Univ. Chicago Press, 1969. Zbl0206.31604MR40 #5780
- [Ar] V. I. ARNOLD, Modes and Quasimodes, Fun. Anal. and App., 6 (1972), 44. Zbl0251.70012MR45 #6331
- [BaUr] S. BANDO and H. URAKAWA, Generic properties of the eigenvalues of the Laplacian for compact riemannian manifolds, Tôhoku Math. J., 35 (1983), 155-172.
- [Be1] G. BESSON, On the multiplicity of eigenvalues of the Laplacian, SLN 1339, Springer-Verlag, (1988), 32-53. Zbl0708.53040MR90b:58264
- [Be2] G. BESSON, Propriétés génériques des fonctions propres et multiplicités, preprint (1989). Zbl0697.58056MR90k:58226
- [B1Wi1] D. D. BLEECKER and L. C. WILSON, Splitting the spectrum of a Riemannian manifold, SIAM J. Math. Anal., 11 (5) (1980), 813-818. Zbl0449.58021MR81j:58077
- [BröT-D] T. BRÖCKER and T. TOM DIECK, Representations of Compact Lie Groups, Grad. Texts, Springer-Verlag, 98 (1985). Zbl0581.22009MR86i:22023
- [Bro] R. BROOKS, Constructing isospectral manifolds, Am. Math. Monthly, 95 (1988), 823-839. Zbl0673.58046MR89k:58285
- [D] H. DONNELLY, G-spaces, the asymptotic splitting of L2(M) into irreducibles, Math. Ann., 237 (1978), 23-40. Zbl0379.53019MR80b:58063
- [H] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985. Zbl0601.35001
- [K] A. A. KIRILLOV, Elements of the Theory of Representations, Springer-Verlag, 1976. Zbl0342.22001MR54 #447
- [PSa] R. PHILLIPS and P. SARNAK, The Weyl theorem and the deformation of discrete groups, Comm. P.A.M., 38 (1985), 853-866. Zbl0614.10027MR87f:11035
- [SeT] H. SEIFERT and W. THRELFALL, A textbook of topology, Academic Press, 1980. Zbl0469.55001
- [Su] SUNADA T., Riemannian coverings and isospectral manifolds, Ann. Math., 121 (1985), 169-186. Zbl0585.58047MR86h:58141
- [U] K. UHLENBECK, Generic properties of eigenfunctions, Amer. J. Math., 98 (1976), 1059-1078. Zbl0355.58017MR57 #4264
- [Wig] E. P. WIGNER, Group Theory and its Applications to the Quantum, Mechanics of Atomic Spectra, Academic Press, 1959. Zbl0085.37905
- [Z] S. ZELDITCH, Isospectrality in the category of Fourier integral operators I, preprint (1990). Zbl0769.53026
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.