On the classgroups of imaginary abelian fields

David Solomon

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 3, page 467-492
  • ISSN: 0373-0956

Abstract

top
Let p be an odd prime, χ an odd, p -adic Dirichlet character and K the cyclic imaginary extension of Q associated to χ . We define a “ χ -part” of the Sylow p -subgroup of the class group of K and prove a result relating its p -divisibility to that of the generalized Bernoulli number B 1 , χ - 1 . This uses the results of Mazur and Wiles in Iwasawa theory over Q . The more difficult case, in which p divides the order of χ is our chief concern. In this case the result is new and confirms an earlier conjecture of G. Gras.

How to cite

top

Solomon, David. "On the classgroups of imaginary abelian fields." Annales de l'institut Fourier 40.3 (1990): 467-492. <http://eudml.org/doc/74885>.

@article{Solomon1990,
abstract = {Let $p$ be an odd prime, $\chi $ an odd, $p$-adic Dirichlet character and $K$ the cyclic imaginary extension of $\{\bf Q\}$ associated to $\chi $. We define a “$\chi $-part” of the Sylow $p$-subgroup of the class group of $K$ and prove a result relating its $p$-divisibility to that of the generalized Bernoulli number $B_\{1,\chi ^\{-1\}\}$. This uses the results of Mazur and Wiles in Iwasawa theory over $\{\bf Q\}$. The more difficult case, in which $p$ divides the order of $\chi $ is our chief concern. In this case the result is new and confirms an earlier conjecture of G. Gras.},
author = {Solomon, David},
journal = {Annales de l'institut Fourier},
keywords = {p-adic L-function; main conjecture; imaginary abelian fields; p-adic Dirichlet character; class group; p-divisibility; generalized Bernoulli number; Iwasawa theory},
language = {eng},
number = {3},
pages = {467-492},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the classgroups of imaginary abelian fields},
url = {http://eudml.org/doc/74885},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Solomon, David
TI - On the classgroups of imaginary abelian fields
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 3
SP - 467
EP - 492
AB - Let $p$ be an odd prime, $\chi $ an odd, $p$-adic Dirichlet character and $K$ the cyclic imaginary extension of ${\bf Q}$ associated to $\chi $. We define a “$\chi $-part” of the Sylow $p$-subgroup of the class group of $K$ and prove a result relating its $p$-divisibility to that of the generalized Bernoulli number $B_{1,\chi ^{-1}}$. This uses the results of Mazur and Wiles in Iwasawa theory over ${\bf Q}$. The more difficult case, in which $p$ divides the order of $\chi $ is our chief concern. In this case the result is new and confirms an earlier conjecture of G. Gras.
LA - eng
KW - p-adic L-function; main conjecture; imaginary abelian fields; p-adic Dirichlet character; class group; p-divisibility; generalized Bernoulli number; Iwasawa theory
UR - http://eudml.org/doc/74885
ER -

References

top
  1. [1] L. FEDERER, B. GROSS, Regulators and Iwasawa Modules, Inventiones Mathematicae, 62 (1981), 443-457. Zbl0468.12005MR83f:12005
  2. [2] B. FERRERO & R. GREENBERG, On the Behavior of the p-Adic L-function at s = 0, Inventiones Mathematicae, 50 (1978), 91-102. Zbl0441.12003MR80f:12016
  3. [3] B. FERRERO & L. WASHINGTON, The Iwasawa invariant µp vanishes for abelian number fields, Annals of Math., 109 (1979), 377-396. Zbl0443.12001MR81a:12005
  4. [4] G. GRAS, Etude d'invariants relatifs aux groupes des classes des corps abéliens, Astérisque, 41-42 (1977), 35-53. Zbl0445.12002MR56 #5489
  5. [5] R. GREENBERG, On p-Adic L-functions and Cyclotomic Fields II, Nagoya Math. J., 67 (1977), 139-158. Zbl0373.12007MR56 #2964
  6. [6] K. IWASAWA, Riemann-Hurwitz Formula and p-Adic Galois Representations for Number Fields, Tôhoku Math. J., 33 (1981), 263-288. Zbl0468.12004MR83b:12003
  7. [7] B. MAZUR & A. WILES, Class Fields of Abelian Extensions of ℚ, Inventiones Mathematicae, 76 (1984), 179-330. Zbl0545.12005MR85m:11069
  8. [8] K. RUBIN, Kolyvagin's System of Gauss Sums, Preprint. Zbl0727.11044
  9. [9] K. RUBIN, The Main Conjecture. Appendix to : Cyclotomic Fields I and II, combined 2nd edition, by S. Lang. Grad. Texts in Math., 121, Springer-Verlag, New York (1990), 397-419. Zbl0704.11038
  10. [10] D. SOLOMON, On Lichtenbaum's Conjecture in the Case of Number Fields, PhD. Thesis, Brown University, 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.