On meromorphic equivalence of linear difference operators

Gertrude K. Immink

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 3, page 683-699
  • ISSN: 0373-0956

Abstract

top
We consider linear difference equations whose coefficients are meromorphic at . We characterize the meromorphic equivalence classes of such equations by means of a system of meromorphic invariants. Using an approach inspired by the work of G. D. Birkhoff we show that this system is free.

How to cite

top

Immink, Gertrude K.. "On meromorphic equivalence of linear difference operators." Annales de l'institut Fourier 40.3 (1990): 683-699. <http://eudml.org/doc/74892>.

@article{Immink1990,
abstract = {We consider linear difference equations whose coefficients are meromorphic at $\infty $. We characterize the meromorphic equivalence classes of such equations by means of a system of meromorphic invariants. Using an approach inspired by the work of G. D. Birkhoff we show that this system is free.},
author = {Immink, Gertrude K.},
journal = {Annales de l'institut Fourier},
keywords = {linear difference operator; formal equivalence; inverse problem; Riemann- Hilbert problem; linear difference equations; meromorphic equivalence; meromorphic invariants},
language = {eng},
number = {3},
pages = {683-699},
publisher = {Association des Annales de l'Institut Fourier},
title = {On meromorphic equivalence of linear difference operators},
url = {http://eudml.org/doc/74892},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Immink, Gertrude K.
TI - On meromorphic equivalence of linear difference operators
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 3
SP - 683
EP - 699
AB - We consider linear difference equations whose coefficients are meromorphic at $\infty $. We characterize the meromorphic equivalence classes of such equations by means of a system of meromorphic invariants. Using an approach inspired by the work of G. D. Birkhoff we show that this system is free.
LA - eng
KW - linear difference operator; formal equivalence; inverse problem; Riemann- Hilbert problem; linear difference equations; meromorphic equivalence; meromorphic invariants
UR - http://eudml.org/doc/74892
ER -

References

top
  1. [1] G.D. BIRKHOFF, The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Amer. Acad. Arts and Sci., 49 (1913), 521-568. Zbl44.0391.03JFM44.0391.03
  2. [2] G.D. BIRKHOFF and W.J. TRJITZINSKY, Analytic theory of linear difference equations, Acta Math., 60 (1933), 1-89. Zbl0006.16802JFM59.0450.03
  3. [3] J. ECALLE, Les fonctions résurgentes, t. III, Publ. Math. d'Orsay, Université de Paris-Sud (1985). 
  4. [4] A.S. FOKAS and M.J. ABLOWITZ, On the initial value problem of the second Painlevé transcendent, Comm. Math. Phys., 91 (1983), 381-403. Zbl0524.35094MR86b:34011
  5. [5] G.K. IMMINK, Reduction to canonical forms and the Stokes phenomenon in the theory of linear difference equations, To appear in SIAM J. Math. Anal., 22 (1991). Zbl0733.39004MR92c:39005
  6. [6] G.K. IMMINK, On the asymptotic behaviour of the coefficients of asymptotic power series and its relevance to Stokes phenomena, To appear in SIAM J. Math. Anal., 22 (1991). Zbl0716.30032
  7. [7] W.B. JURKAT, Meromorphe Differentialgleichungen, Lecture Notes in Mathematics 637, Springer Verlag, Berlin (1978). Zbl0408.34004MR82a:34004
  8. [8] B. MALGRANGE, Remarques sur les équations différentielles à points singuliers irréguliers, In : Equations différentielles et systèmes de Pfaff dans le champ complexe, Lecture Notes in Mathematics, 712 (1979), 77-86. Zbl0423.32014MR80k:14019
  9. [9] N.I. MUSKHELISHVILI, Singular integral equations, Noordhoff, Groningen, 1953. 
  10. [10] C. PRAAGMAN, The formal classification of linear difference operators, Proc. Kon. Ned. Ac. Wet. Ser. A, 86 (1983), 249-261. Zbl0519.39003MR85c:12006
  11. [11] Y. SIBUYA, Stokes phenomena, Bull. Amer. Math. Soc., 83 (1977), 1075-1077. Zbl0386.34008MR56 #720
  12. [12] E.C. TITCHMARSH, The theory of functions (2nd ed.), Oxford University Press, Oxford, 1939. Zbl0022.14602JFM65.0302.01
  13. [13] N.P. VEKUA, Systems of singular integral equations, Gordon and Breach, New York, 1967. Zbl0166.09802
  14. [14] J. MARTINET, J.P. RAMIS, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. IHES, 55 (1982), 63-162. Zbl0546.58038MR84k:34011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.