Unique continuation for the solutions of the laplacian plus a drift
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 3, page 651-663
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topRuiz, Alberto, and Vega, Luis. "Unique continuation for the solutions of the laplacian plus a drift." Annales de l'institut Fourier 41.3 (1991): 651-663. <http://eudml.org/doc/74932>.
@article{Ruiz1991,
	abstract = {We prove unique continuation for solutions of the inequality $\vert \Delta u(x)\vert \le V(x)\vert \nabla u(x)\vert $, $x\in \Omega $ a connected set contained in $\{\bf R\}^ n$ and $V$ is in the Morrey spaces $F^\{\alpha ,p\}$, with $p\ge (n-2)/2(1-\alpha )$ and $\alpha < 1$. These spaces include $L^ q$ for $q\ge (3n-2)/2$ (see [H], [BKRS]). If $p=(n-2)/2(1- \alpha )$, the extra assumption of $V$ being small enough is needed.},
	author = {Ruiz, Alberto, Vega, Luis},
	journal = {Annales de l'institut Fourier},
	keywords = {Carleman -weighted inequalities; diadic decomposition; Morrey spaces},
	language = {eng},
	number = {3},
	pages = {651-663},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {Unique continuation for the solutions of the laplacian plus a drift},
	url = {http://eudml.org/doc/74932},
	volume = {41},
	year = {1991},
}
TY  - JOUR
AU  - Ruiz, Alberto
AU  - Vega, Luis
TI  - Unique continuation for the solutions of the laplacian plus a drift
JO  - Annales de l'institut Fourier
PY  - 1991
PB  - Association des Annales de l'Institut Fourier
VL  - 41
IS  - 3
SP  - 651
EP  - 663
AB  - We prove unique continuation for solutions of the inequality $\vert \Delta u(x)\vert \le V(x)\vert \nabla u(x)\vert $, $x\in \Omega $ a connected set contained in ${\bf R}^ n$ and $V$ is in the Morrey spaces $F^{\alpha ,p}$, with $p\ge (n-2)/2(1-\alpha )$ and $\alpha < 1$. These spaces include $L^ q$ for $q\ge (3n-2)/2$ (see [H], [BKRS]). If $p=(n-2)/2(1- \alpha )$, the extra assumption of $V$ being small enough is needed.
LA  - eng
KW  - Carleman -weighted inequalities; diadic decomposition; Morrey spaces
UR  - http://eudml.org/doc/74932
ER  - 
References
top- [BKRS] BARCELÓ, KENIG, RUIZ, SOGGE, Weighted Sobolev inequalities and unique continuation for the Laplaciaan plus lower order terms, III. J. of Math., 32, n.2 (1988), 230-245. Zbl0689.35015MR89h:35048
 - [C] S. CAMPANATO, Proprietá di inclusione per spazi di Morrey, Ricerche Mat., 12 (1963), 67-896. Zbl0192.22703MR27 #6157
 - [CS] S. CHANILLO, E. SAWYER, Unique continuation for ∆ + V and the C. Fefferman-Phong class, preprint. Zbl0702.35034
 - [ChR] F. CHIARENZA, A. RUIZ, Uniform L2 weighted inequalities, Proc. A.M.S., to appear. Zbl0745.35007
 - [ChF] F. CHIARENZA, M. FRASCA, A remark on a paper by C. Fefferman, Proc. A.M.S., (Feb. 1990), 407-409. Zbl0694.46029MR91a:46030
 - [FeP] C. FEFFERMAN, D.H. PHONG, Lower bounds for Schrödinger equations, Journées Eqs. aux deriv. partielles, St. Jean de Monts, 1982. Zbl0492.35057
 - [GL] N. GAROFALO, F.H. LIN, Unique continuation for elliptic operators; a geometric variational approach, Comm. Pure Appl. Math., 40 (1987), 347-366. Zbl0674.35007MR88j:35046
 - [H] L. HÖRMANDER, Uniqueness theorem for second order differential operators, Comm. PDE, 8 (1983), 21-64. Zbl0546.35023
 - [Je] D. JERISON, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. In Math., 63 (1986), 118-134. Zbl0627.35008MR88b:35218
 - [Jo] J.L. JOURNÉ, Calderón-Zygmund operators, pseudo-differential operators, and the Cauchyintegral of Calderón, Lecture Notes in Math., Springer Verlag, 1983. Zbl0508.42021
 - [K] C. KENIG, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation. Harmonic Analysis and PDE'S, Proceedings El Escorial 1987, Springer Verlag, 1384, (1989), 69-90. Zbl0685.35003
 - [P] J. PEETRE, On the theory of Lp,λ spaces, J. Funct. Anal., 4 (1969), 71-87. Zbl0175.42602MR39 #3300
 - [RV] A. RUIZ, L VEGA, Unique continuation for Schrödinger operators in Morrey spaces, preprint. Zbl0809.47046
 - [St] G. STAMPACCHIA, L(p,λ)-spaces and interpolation, Comm. on Pure and Appl. Math., XVII (1964), 293-306. Zbl0149.09201MR31 #2608
 - [Se] E. STEIN, Oscillatory integrals in Fourier Analysis. In: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, 112 (1986), 307-355. Zbl0618.42006MR88g:42022
 - [T] P. TOMAS, A restriction theorem for the Fourier transform, Bull. AMS, (1975), 477-478. Zbl0298.42011MR50 #10681
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.