Unique continuation for the solutions of the laplacian plus a drift

Alberto Ruiz; Luis Vega

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 3, page 651-663
  • ISSN: 0373-0956

Abstract

top
We prove unique continuation for solutions of the inequality | Δ u ( x ) | V ( x ) | u ( x ) | , x Ω a connected set contained in R n and V is in the Morrey spaces F α , p , with p ( n - 2 ) / 2 ( 1 - α ) and α < 1 . These spaces include L q for q ( 3 n - 2 ) / 2 (see [H], [BKRS]). If p = ( n - 2 ) / 2 ( 1 - α ) , the extra assumption of V being small enough is needed.

How to cite

top

Ruiz, Alberto, and Vega, Luis. "Unique continuation for the solutions of the laplacian plus a drift." Annales de l'institut Fourier 41.3 (1991): 651-663. <http://eudml.org/doc/74932>.

@article{Ruiz1991,
abstract = {We prove unique continuation for solutions of the inequality $\vert \Delta u(x)\vert \le V(x)\vert \nabla u(x)\vert $, $x\in \Omega $ a connected set contained in $\{\bf R\}^ n$ and $V$ is in the Morrey spaces $F^\{\alpha ,p\}$, with $p\ge (n-2)/2(1-\alpha )$ and $\alpha &lt; 1$. These spaces include $L^ q$ for $q\ge (3n-2)/2$ (see [H], [BKRS]). If $p=(n-2)/2(1- \alpha )$, the extra assumption of $V$ being small enough is needed.},
author = {Ruiz, Alberto, Vega, Luis},
journal = {Annales de l'institut Fourier},
keywords = {Carleman -weighted inequalities; diadic decomposition; Morrey spaces},
language = {eng},
number = {3},
pages = {651-663},
publisher = {Association des Annales de l'Institut Fourier},
title = {Unique continuation for the solutions of the laplacian plus a drift},
url = {http://eudml.org/doc/74932},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Ruiz, Alberto
AU - Vega, Luis
TI - Unique continuation for the solutions of the laplacian plus a drift
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 3
SP - 651
EP - 663
AB - We prove unique continuation for solutions of the inequality $\vert \Delta u(x)\vert \le V(x)\vert \nabla u(x)\vert $, $x\in \Omega $ a connected set contained in ${\bf R}^ n$ and $V$ is in the Morrey spaces $F^{\alpha ,p}$, with $p\ge (n-2)/2(1-\alpha )$ and $\alpha &lt; 1$. These spaces include $L^ q$ for $q\ge (3n-2)/2$ (see [H], [BKRS]). If $p=(n-2)/2(1- \alpha )$, the extra assumption of $V$ being small enough is needed.
LA - eng
KW - Carleman -weighted inequalities; diadic decomposition; Morrey spaces
UR - http://eudml.org/doc/74932
ER -

References

top
  1. [BKRS] BARCELÓ, KENIG, RUIZ, SOGGE, Weighted Sobolev inequalities and unique continuation for the Laplaciaan plus lower order terms, III. J. of Math., 32, n.2 (1988), 230-245. Zbl0689.35015MR89h:35048
  2. [C] S. CAMPANATO, Proprietá di inclusione per spazi di Morrey, Ricerche Mat., 12 (1963), 67-896. Zbl0192.22703MR27 #6157
  3. [CS] S. CHANILLO, E. SAWYER, Unique continuation for ∆ + V and the C. Fefferman-Phong class, preprint. Zbl0702.35034
  4. [ChR] F. CHIARENZA, A. RUIZ, Uniform L2 weighted inequalities, Proc. A.M.S., to appear. Zbl0745.35007
  5. [ChF] F. CHIARENZA, M. FRASCA, A remark on a paper by C. Fefferman, Proc. A.M.S., (Feb. 1990), 407-409. Zbl0694.46029MR91a:46030
  6. [FeP] C. FEFFERMAN, D.H. PHONG, Lower bounds for Schrödinger equations, Journées Eqs. aux deriv. partielles, St. Jean de Monts, 1982. Zbl0492.35057
  7. [GL] N. GAROFALO, F.H. LIN, Unique continuation for elliptic operators; a geometric variational approach, Comm. Pure Appl. Math., 40 (1987), 347-366. Zbl0674.35007MR88j:35046
  8. [H] L. HÖRMANDER, Uniqueness theorem for second order differential operators, Comm. PDE, 8 (1983), 21-64. Zbl0546.35023
  9. [Je] D. JERISON, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. In Math., 63 (1986), 118-134. Zbl0627.35008MR88b:35218
  10. [Jo] J.L. JOURNÉ, Calderón-Zygmund operators, pseudo-differential operators, and the Cauchyintegral of Calderón, Lecture Notes in Math., Springer Verlag, 1983. Zbl0508.42021
  11. [K] C. KENIG, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation. Harmonic Analysis and PDE'S, Proceedings El Escorial 1987, Springer Verlag, 1384, (1989), 69-90. Zbl0685.35003
  12. [P] J. PEETRE, On the theory of Lp,λ spaces, J. Funct. Anal., 4 (1969), 71-87. Zbl0175.42602MR39 #3300
  13. [RV] A. RUIZ, L VEGA, Unique continuation for Schrödinger operators in Morrey spaces, preprint. Zbl0809.47046
  14. [St] G. STAMPACCHIA, L(p,λ)-spaces and interpolation, Comm. on Pure and Appl. Math., XVII (1964), 293-306. Zbl0149.09201MR31 #2608
  15. [Se] E. STEIN, Oscillatory integrals in Fourier Analysis. In: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, 112 (1986), 307-355. Zbl0618.42006MR88g:42022
  16. [T] P. TOMAS, A restriction theorem for the Fourier transform, Bull. AMS, (1975), 477-478. Zbl0298.42011MR50 #10681

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.