Displaying similar documents to “Unique continuation for the solutions of the laplacian plus a drift”

Regularity properties of commutators and B M O -Triebel-Lizorkin spaces

Abdellah Youssfi (1995)

Annales de l'institut Fourier

Similarity:

In this paper we consider the regularity problem for the commutators ( [ b , R k ] ) 1 k n where b is a locally integrable function and ( R j ) 1 j n are the Riesz transforms in the n -dimensional euclidean space n . More precisely, we prove that these commutators ( [ b , R k ] ) 1 k n are bounded from L p into the Besov space B ˙ p s , p for 1 < p < + and 0 < s < 1 if and only if b is in the B M O -Triebel-Lizorkin space F ˙ s , p . The reduction of our result to the case p = 2 gives in particular that the commutators ( [ b , R k ] ) 1 k n are bounded form L 2 into the Sobolev space H ˙ s if and only if b ...

Unique continuation for Schrödinger operators in dimension three or less

Eric T. Sawyer (1984)

Annales de l'institut Fourier

Similarity:

We show that the differential inequality | Δ u | v | u | has the unique continuation property relative to the Sobolev space H l o c 2 , 1 ( Ω ) , Ω R n , n 3 , if v satisfies the condition ( K n loc ) lim r 0 sup x K | x - y | < r | x - y | 2 - n v ( y ) d y = 0 for all compact K Ω , where if n = 2 , we replace | x - y | 2 - n by - log | x - y | . This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, H = - Δ + v , in the case n 3 . The proof uses Carleman’s approach together with the following pointwise inequality valid for all N = 0 , 1 , 2 , ... and any u H c 2 , 1 ( R 3 - { 0 } ) , | u ( x ) | | x | N C R 3 | x - y | - 1 | Δ u ( y ) | | y | N d y for a.e. x in R 3 .

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

Similarity:

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and...

Existence of solutions to the nonstationary Stokes system in H - μ 2 , 1 , μ ∈ (0,1), in a domain with a distinguished axis. Part 2. Estimate in the 3d case

W. M. Zajączkowski (2007)

Applicationes Mathematicae

Similarity:

We examine the regularity of solutions to the Stokes system in a neighbourhood of the distinguished axis under the assumptions that the initial velocity v₀ and the external force f belong to some weighted Sobolev spaces. It is assumed that the weight is the (-μ )th power of the distance to the axis. Let f L 2 , - μ , v H - μ ¹ , μ ∈ (0,1). We prove an estimate of the velocity in the H - μ 2 , 1 norm and of the gradient of the pressure in the norm of L 2 , - μ . We apply the Fourier transform with respect to the variable along...

Oscillation conditions for difference equations with several variable arguments

George E. Chatzarakis, Takaŝi Kusano, Ioannis P. Stavroulakis (2015)

Mathematica Bohemica

Similarity:

Consider the difference equation Δ x ( n ) + i = 1 m p i ( n ) x ( τ i ( n ) ) = 0 , n 0 x ( n ) - i = 1 m p i ( n ) x ( σ i ( n ) ) = 0 , n 1 , where ( p i ( n ) ) , 1 i m are sequences of nonnegative real numbers, τ i ( n ) [ σ i ( n ) ], 1 i m are general retarded (advanced) arguments and Δ [ ] denotes the forward (backward) difference operator Δ x ( n ) = x ( n + 1 ) - x ( n ) [ x ( n ) = x ( n ) - x ( n - 1 ) ]. New oscillation criteria are established when the well-known oscillation conditions lim sup n i = 1 m j = τ ( n ) n p i ( j ) > 1 lim sup n i = 1 m j = n σ ( n ) p i ( j ) > 1 and lim inf n i = 1 m j = τ i ( n ) n - 1 p i ( j ) > 1 e lim inf n i = 1 m j = n + 1 σ i ( n ) p i ( j ) > 1 e are not satisfied. Here τ ( n ) = max 1 i m τ i ( n ) [ σ ( n ) = min 1 i m σ i ( n ) ] . The results obtained essentially improve known results in the literature. Examples illustrating the results are also given.

A radial estimate for the maximal operator associated with the free Schrödinger equation

Sichun Wang (2006)

Studia Mathematica

Similarity:

Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator S d and its associated global maximal operator S * * d by ( S d f ) ( x , t ) = 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ , f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ, ( S * * d f ) ( x ) = s u p t | 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ | , f ∈ (ℝⁿ), x ∈ ℝⁿ, where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, S d f is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥...

Embeddings between weighted Copson and Cesàro function spaces

Amiran Gogatishvili, Rza Mustafayev, Tuğçe Ünver (2017)

Czechoslovak Mathematical Journal

Similarity:

In this paper, characterizations of the embeddings between weighted Copson function spaces Cop p 1 , q 1 ( u 1 , v 1 ) and weighted Cesàro function spaces Ces p 2 , q 2 ( u 2 , v 2 ) are given. In particular, two-sided estimates of the optimal constant c in the inequality d ( 0 0 t f ( τ ) p 2 v 2 ( τ ) d τ q 2 / p 2 u 2 ( t ) d t ) 1 / q 2 c 0 t f ( τ ) p 1 v 1 ( τ ) d τ q 1 / p 1 u 1 ( t ) d t 1 / q 1 , d where p 1 , p 2 , q 1 , q 2 ( 0 , ) , p 2 q 2 and u 1 , u 2 , v 1 , v 2 are weights on ( 0 , ) , are obtained. The most innovative part consists of the fact that possibly different parameters p 1 and p 2 and possibly different inner weights v 1 and v 2 are allowed. The proof is based on the combination of duality techniques...

A weighted inequality for the Hardy operator involving suprema

Pavla Hofmanová (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let u be a weight on ( 0 , ) . Assume that u is continuous on ( 0 , ) . Let the operator S u be given at measurable non-negative function ϕ on ( 0 , ) by S u ϕ ( t ) = sup 0 < τ t u ( τ ) ϕ ( τ ) . We characterize weights v , w on ( 0 , ) for which there exists a positive constant C such that the inequality 0 [ S u ϕ ( t ) ] q w ( t ) d t 1 q 0 [ ϕ ( t ) ] p v ( t ) d t 1 p holds for every 0 < p , q < . Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces.