Genus 2 Heegaard decompositions of small Seifert manifolds
Michel Boileau; D. J. Collins; H. Zieschang
Annales de l'institut Fourier (1991)
- Volume: 41, Issue: 4, page 1005-1024
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoileau, Michel, Collins, D. J., and Zieschang, H.. "Genus 2 Heegaard decompositions of small Seifert manifolds." Annales de l'institut Fourier 41.4 (1991): 1005-1024. <http://eudml.org/doc/74937>.
@article{Boileau1991,
abstract = {The genus 2 Heegaard splittings and decompositions of Seifert manifolds over $S$ with 3 exeptional fibres are classified with respect to isotopies and homeomorphisms. In general there are 3 different isotopy classes of Heegaard splittings and 6 different isotopy classes of Heegaard decompositions. Moreover, we determine when a homeomorphism class is not an isotopy class.},
author = {Boileau, Michel, Collins, D. J., Zieschang, H.},
journal = {Annales de l'institut Fourier},
keywords = {Nielsen equivalence; Heegaard splittings; Seifert manifolds},
language = {eng},
number = {4},
pages = {1005-1024},
publisher = {Association des Annales de l'Institut Fourier},
title = {Genus 2 Heegaard decompositions of small Seifert manifolds},
url = {http://eudml.org/doc/74937},
volume = {41},
year = {1991},
}
TY - JOUR
AU - Boileau, Michel
AU - Collins, D. J.
AU - Zieschang, H.
TI - Genus 2 Heegaard decompositions of small Seifert manifolds
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 4
SP - 1005
EP - 1024
AB - The genus 2 Heegaard splittings and decompositions of Seifert manifolds over $S$ with 3 exeptional fibres are classified with respect to isotopies and homeomorphisms. In general there are 3 different isotopy classes of Heegaard splittings and 6 different isotopy classes of Heegaard decompositions. Moreover, we determine when a homeomorphism class is not an isotopy class.
LA - eng
KW - Nielsen equivalence; Heegaard splittings; Seifert manifolds
UR - http://eudml.org/doc/74937
ER -
References
top- [1] J. S. BIRMAN, F. GONZÁLES-ACUÑA, J. M. MONTESINOS, Heegaard splittings of prime 3-manifolds are not unique, Mich. Math., J., 23 (1976), 97-103. Zbl0321.57004
- [2] M. BOILEAU, D. J. COLLINS, H. ZIESCHANG, Scindements de Heegaard des petites variétés de Seifert, C.R. Acad. Sci. Paris, 305-I (1987), 557-560. Zbl0651.57010MR88k:57003
- [3] M. BOILEAU, J.-P. OTAL, Groupes des difféotopies de certaines variétés de Seifert. C.R. Acad. Sci., Paris, 303-I (1986), 19-22. Zbl0596.57010MR87g:57022
- Groupes d'homéotopies et scindements de Heegaard des petites variétés de Seifert, Invent. Math., 106 (1991), 85-107. Zbl0752.57006
- [4] M. BOILEAU, J.-P. OTAL, Sur les scindements de Heegaard du tore T3, J. Diff. Geom., 32 (1990), 209-233. Zbl0754.53012MR91i:57006
- [5] M. BOILEAU, M. ROST, H. ZIESCHANG, On Heegaard decompositions of torus knot exteriors' and related Seifert fibre spaces, Math. Ann., 279 (1988), 553-581. Zbl0616.57008MR89a:57013
- [6] M. BOILEAU, H. ZIESCHANG, Heegaard genus of closed orientable Seifert 3-manifolds, Invent. Math., 76 (1984), 455-468. Zbl0538.57004MR86a:57008
- [7] F. BONAHON, Difféotopies des espaces lenticulaires, Topology, 22 (1983), 305-314. Zbl0526.57009MR85d:57008
- [8] F. BONAHON, J.-P. OTAL, Scindements de Heegaard des espaces lenticulaires, Ann. Scient. Éc. Norm. Sup., 16 (1983), 451-466. Zbl0545.57002MR85c:57010
- [9] M. LUSTIG, Nielsen equivalence and simple homotopy type, Proc. London Math. Soc. (to appear). Zbl0742.57003
- [10] M. LUSTIG, Y. MORIAH, Nielsen equivalence in Fuchsian groups and Seifert fibre spaces, Topology (to appear). Zbl0726.55010
- [11] R. C. LYNDON, P. E. SCHUPP, Combinatorial Group Theory, Berlin-Heidelberg, New York, Springer, 1977. Zbl0368.20023MR58 #28182
- [12] Y. MORIAH, Heegaard splittings and group presentations, Thesis, University of Texas, Austin, 1986.
- [13] Y. MORIAH, Heegaard splittings of Seifert fibered spaces, Invent. Math., 91 (1988), 465-481. Zbl0651.57012MR89d:57010
- [14] J. NIELSEN, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., 78 (1918), 385-397. Zbl46.0175.01JFM46.0175.01
- [15] P. ORLIK, E. VOGT, H. ZIESCHANG, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology, 6 (1967), 49-64. Zbl0147.23503MR35 #3696
- [16] G. ROSENBERGER, All generating pairs of all two generator Fuchsian groups, Arch. Math., 46 (1986), 198-204. Zbl0563.20043MR87g:20080
- [17] H. SEIFERT, Topologie dreidimensionaler gefaserter Räume, Acta Math., 60 (1933), 147-238. Zbl0006.08304JFM59.1241.02
- [18] F. WALDHAUSEN, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, Invent. Math., 3 (1967), 308-333 ; II, Invent. Math., 4 (1967), 87-117. Zbl0168.44503MR38 #3880
- [19] F. WALDHAUSEN, Heegaard-Zerlegungen der 3-Sphäre, Topology, 7 (1968), 195-203. Zbl0157.54501MR37 #3576
- [20] H. ZIESCHANG, B. ZIMMERMANN, Über Erweiterungen von Z und Z * Z durch nichteuklidische kristallographische Gruppen, Math. Ann., 259 (1982), 29-51. Zbl0466.57002MR84i:57001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.