Genus 2 Heegaard decompositions of small Seifert manifolds

Michel Boileau; D. J. Collins; H. Zieschang

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 4, page 1005-1024
  • ISSN: 0373-0956

Abstract

top
The genus 2 Heegaard splittings and decompositions of Seifert manifolds over S with 3 exeptional fibres are classified with respect to isotopies and homeomorphisms. In general there are 3 different isotopy classes of Heegaard splittings and 6 different isotopy classes of Heegaard decompositions. Moreover, we determine when a homeomorphism class is not an isotopy class.

How to cite

top

Boileau, Michel, Collins, D. J., and Zieschang, H.. "Genus 2 Heegaard decompositions of small Seifert manifolds." Annales de l'institut Fourier 41.4 (1991): 1005-1024. <http://eudml.org/doc/74937>.

@article{Boileau1991,
abstract = {The genus 2 Heegaard splittings and decompositions of Seifert manifolds over $S$ with 3 exeptional fibres are classified with respect to isotopies and homeomorphisms. In general there are 3 different isotopy classes of Heegaard splittings and 6 different isotopy classes of Heegaard decompositions. Moreover, we determine when a homeomorphism class is not an isotopy class.},
author = {Boileau, Michel, Collins, D. J., Zieschang, H.},
journal = {Annales de l'institut Fourier},
keywords = {Nielsen equivalence; Heegaard splittings; Seifert manifolds},
language = {eng},
number = {4},
pages = {1005-1024},
publisher = {Association des Annales de l'Institut Fourier},
title = {Genus 2 Heegaard decompositions of small Seifert manifolds},
url = {http://eudml.org/doc/74937},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Boileau, Michel
AU - Collins, D. J.
AU - Zieschang, H.
TI - Genus 2 Heegaard decompositions of small Seifert manifolds
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 4
SP - 1005
EP - 1024
AB - The genus 2 Heegaard splittings and decompositions of Seifert manifolds over $S$ with 3 exeptional fibres are classified with respect to isotopies and homeomorphisms. In general there are 3 different isotopy classes of Heegaard splittings and 6 different isotopy classes of Heegaard decompositions. Moreover, we determine when a homeomorphism class is not an isotopy class.
LA - eng
KW - Nielsen equivalence; Heegaard splittings; Seifert manifolds
UR - http://eudml.org/doc/74937
ER -

References

top
  1. [1] J. S. BIRMAN, F. GONZÁLES-ACUÑA, J. M. MONTESINOS, Heegaard splittings of prime 3-manifolds are not unique, Mich. Math., J., 23 (1976), 97-103. Zbl0321.57004
  2. [2] M. BOILEAU, D. J. COLLINS, H. ZIESCHANG, Scindements de Heegaard des petites variétés de Seifert, C.R. Acad. Sci. Paris, 305-I (1987), 557-560. Zbl0651.57010MR88k:57003
  3. [3] M. BOILEAU, J.-P. OTAL, Groupes des difféotopies de certaines variétés de Seifert. C.R. Acad. Sci., Paris, 303-I (1986), 19-22. Zbl0596.57010MR87g:57022
  4. Groupes d'homéotopies et scindements de Heegaard des petites variétés de Seifert, Invent. Math., 106 (1991), 85-107. Zbl0752.57006
  5. [4] M. BOILEAU, J.-P. OTAL, Sur les scindements de Heegaard du tore T3, J. Diff. Geom., 32 (1990), 209-233. Zbl0754.53012MR91i:57006
  6. [5] M. BOILEAU, M. ROST, H. ZIESCHANG, On Heegaard decompositions of torus knot exteriors' and related Seifert fibre spaces, Math. Ann., 279 (1988), 553-581. Zbl0616.57008MR89a:57013
  7. [6] M. BOILEAU, H. ZIESCHANG, Heegaard genus of closed orientable Seifert 3-manifolds, Invent. Math., 76 (1984), 455-468. Zbl0538.57004MR86a:57008
  8. [7] F. BONAHON, Difféotopies des espaces lenticulaires, Topology, 22 (1983), 305-314. Zbl0526.57009MR85d:57008
  9. [8] F. BONAHON, J.-P. OTAL, Scindements de Heegaard des espaces lenticulaires, Ann. Scient. Éc. Norm. Sup., 16 (1983), 451-466. Zbl0545.57002MR85c:57010
  10. [9] M. LUSTIG, Nielsen equivalence and simple homotopy type, Proc. London Math. Soc. (to appear). Zbl0742.57003
  11. [10] M. LUSTIG, Y. MORIAH, Nielsen equivalence in Fuchsian groups and Seifert fibre spaces, Topology (to appear). Zbl0726.55010
  12. [11] R. C. LYNDON, P. E. SCHUPP, Combinatorial Group Theory, Berlin-Heidelberg, New York, Springer, 1977. Zbl0368.20023MR58 #28182
  13. [12] Y. MORIAH, Heegaard splittings and group presentations, Thesis, University of Texas, Austin, 1986. 
  14. [13] Y. MORIAH, Heegaard splittings of Seifert fibered spaces, Invent. Math., 91 (1988), 465-481. Zbl0651.57012MR89d:57010
  15. [14] J. NIELSEN, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., 78 (1918), 385-397. Zbl46.0175.01JFM46.0175.01
  16. [15] P. ORLIK, E. VOGT, H. ZIESCHANG, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology, 6 (1967), 49-64. Zbl0147.23503MR35 #3696
  17. [16] G. ROSENBERGER, All generating pairs of all two generator Fuchsian groups, Arch. Math., 46 (1986), 198-204. Zbl0563.20043MR87g:20080
  18. [17] H. SEIFERT, Topologie dreidimensionaler gefaserter Räume, Acta Math., 60 (1933), 147-238. Zbl0006.08304JFM59.1241.02
  19. [18] F. WALDHAUSEN, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, Invent. Math., 3 (1967), 308-333 ; II, Invent. Math., 4 (1967), 87-117. Zbl0168.44503MR38 #3880
  20. [19] F. WALDHAUSEN, Heegaard-Zerlegungen der 3-Sphäre, Topology, 7 (1968), 195-203. Zbl0157.54501MR37 #3576
  21. [20] H. ZIESCHANG, B. ZIMMERMANN, Über Erweiterungen von Z und Z * Z durch nichteuklidische kristallographische Gruppen, Math. Ann., 259 (1982), 29-51. Zbl0466.57002MR84i:57001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.