Taut foliations of 3-manifolds and suspensions of
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 1-2, page 193-208
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGabai, David. "Taut foliations of 3-manifolds and suspensions of $S^1$." Annales de l'institut Fourier 42.1-2 (1992): 193-208. <http://eudml.org/doc/74950>.
@article{Gabai1992,
abstract = {Let $M$ be a compact oriented 3-manifold whose boundary contains a single torus $P$ and let $\{\cal F\}$ be a taut foliation on $M$ whose restriction to $\partial M$ has a Reeb component. The main technical result of the paper, asserts that if $N$ is obtained by Dehn filling $P$ along any curve not parallel to the Reeb component, then $N$ has a taut foliation.},
author = {Gabai, David},
journal = {Annales de l'institut Fourier},
keywords = {compact oriented 3-manifold; taut foliation; Reeb component; Dehn filling; foliation induced on boundary; boundary contains a single torus},
language = {eng},
number = {1-2},
pages = {193-208},
publisher = {Association des Annales de l'Institut Fourier},
title = {Taut foliations of 3-manifolds and suspensions of $S^1$},
url = {http://eudml.org/doc/74950},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Gabai, David
TI - Taut foliations of 3-manifolds and suspensions of $S^1$
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 1-2
SP - 193
EP - 208
AB - Let $M$ be a compact oriented 3-manifold whose boundary contains a single torus $P$ and let ${\cal F}$ be a taut foliation on $M$ whose restriction to $\partial M$ has a Reeb component. The main technical result of the paper, asserts that if $N$ is obtained by Dehn filling $P$ along any curve not parallel to the Reeb component, then $N$ has a taut foliation.
LA - eng
KW - compact oriented 3-manifold; taut foliation; Reeb component; Dehn filling; foliation induced on boundary; boundary contains a single torus
UR - http://eudml.org/doc/74950
ER -
References
top- [B] J. BERGE, The knots in D2 - S1 which have non trivial surgeries yielding D2 - S1, Top. and App., to appear.
- [Br] M. BRITTENHAM, Essential laminations in Seifert fibered spaces, preprint. Zbl0791.57013
- [D] A. DENJOY, Sur les courbes définies par les équations différentielles à la surface du tore, J. de Math., 11 (1932). Zbl58.1124.04JFM58.1124.04
- [F] S.R. FENLEY, Quasi-Fuchsian Seifert surfaces, preprint. Zbl0902.57003
- [FS] R. FINTUSHEL & R. STERN, Constructing lens spaces from surgery on knots, Math. Zeitschrift, 175 (1980), 33-51. Zbl0425.57001MR82i:57009a
- [GK] D. GABAI & W.H. KAZEZ, Pseudo-Anosov maps and surgery on fibred 2-bridge knots, Top. and App., 37 (1990), 93-100. Zbl0714.57004MR91j:57005
- [GM] D. GABAI & L. MOSHER, Laminations and pseudo-Anosov flows transverse to finite depth foliations, in prep.
- [GO] D. GABAI & U. OERTEL, Essential laminations in 3-manifolds, Ann. Math., 130 (1989), 41-73. Zbl0685.57007MR90h:57012
- [Ha] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 3 (1962), 367-397. Zbl0122.40702MR32 #6487
- [HO] A. HATCHER & U. OERTEL, Personal communication.
- [M] W.P. MENASCO, Closed incompressible surfaces in alternating knot and link complements, Topology, 23 (1984), 225-246. Zbl0525.57003MR86b:57004
- [N] S.P. NOVIKOV, Topology of foliations, Trans. Mos. Math. Soc., 14 (1963), 268-305. Zbl0247.57006MR34 #824
- [R] R. ROUSSERIE, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, IHES, 43 (1973), 101-142. Zbl0356.57017
- [Ro] H. ROSENBERG, Foliations by planes, Topology, 6 (1967), 131-138. Zbl0157.30504
- [Sc] M. SCHARLEMANN, Producing reducible manifolds by surgery on a knot, Topology, 29 (1990), 481-500. Zbl0727.57015MR91i:57003
- [T] W.P. THURSTON, A norm for the homology of 3-manifolds, Memoirs AMS, 339 (1986), 99-139. Zbl0585.57006MR88h:57014
- [Ti] S. TISCHLER, Totally parallelizable 3-manifolds, Topological dynamics, Auslander and Gottshalk eds. Benjamin (1968), 471-492. Zbl0201.56501MR38 #3884
- [W] Y. WU, Essential laminations in surgered manifolds, preprint. Zbl0746.57006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.