Taut foliations of 3-manifolds and suspensions of S 1

David Gabai

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 1-2, page 193-208
  • ISSN: 0373-0956

Abstract

top
Let M be a compact oriented 3-manifold whose boundary contains a single torus P and let be a taut foliation on M whose restriction to M has a Reeb component. The main technical result of the paper, asserts that if N is obtained by Dehn filling P along any curve not parallel to the Reeb component, then N has a taut foliation.

How to cite

top

Gabai, David. "Taut foliations of 3-manifolds and suspensions of $S^1$." Annales de l'institut Fourier 42.1-2 (1992): 193-208. <http://eudml.org/doc/74950>.

@article{Gabai1992,
abstract = {Let $M$ be a compact oriented 3-manifold whose boundary contains a single torus $P$ and let $\{\cal F\}$ be a taut foliation on $M$ whose restriction to $\partial M$ has a Reeb component. The main technical result of the paper, asserts that if $N$ is obtained by Dehn filling $P$ along any curve not parallel to the Reeb component, then $N$ has a taut foliation.},
author = {Gabai, David},
journal = {Annales de l'institut Fourier},
keywords = {compact oriented 3-manifold; taut foliation; Reeb component; Dehn filling; foliation induced on boundary; boundary contains a single torus},
language = {eng},
number = {1-2},
pages = {193-208},
publisher = {Association des Annales de l'Institut Fourier},
title = {Taut foliations of 3-manifolds and suspensions of $S^1$},
url = {http://eudml.org/doc/74950},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Gabai, David
TI - Taut foliations of 3-manifolds and suspensions of $S^1$
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 1-2
SP - 193
EP - 208
AB - Let $M$ be a compact oriented 3-manifold whose boundary contains a single torus $P$ and let ${\cal F}$ be a taut foliation on $M$ whose restriction to $\partial M$ has a Reeb component. The main technical result of the paper, asserts that if $N$ is obtained by Dehn filling $P$ along any curve not parallel to the Reeb component, then $N$ has a taut foliation.
LA - eng
KW - compact oriented 3-manifold; taut foliation; Reeb component; Dehn filling; foliation induced on boundary; boundary contains a single torus
UR - http://eudml.org/doc/74950
ER -

References

top
  1. [B] J. BERGE, The knots in D2 - S1 which have non trivial surgeries yielding D2 - S1, Top. and App., to appear. 
  2. [Br] M. BRITTENHAM, Essential laminations in Seifert fibered spaces, preprint. Zbl0791.57013
  3. [D] A. DENJOY, Sur les courbes définies par les équations différentielles à la surface du tore, J. de Math., 11 (1932). Zbl58.1124.04JFM58.1124.04
  4. [F] S.R. FENLEY, Quasi-Fuchsian Seifert surfaces, preprint. Zbl0902.57003
  5. [FS] R. FINTUSHEL & R. STERN, Constructing lens spaces from surgery on knots, Math. Zeitschrift, 175 (1980), 33-51. Zbl0425.57001MR82i:57009a
  6. [GK] D. GABAI & W.H. KAZEZ, Pseudo-Anosov maps and surgery on fibred 2-bridge knots, Top. and App., 37 (1990), 93-100. Zbl0714.57004MR91j:57005
  7. [GM] D. GABAI & L. MOSHER, Laminations and pseudo-Anosov flows transverse to finite depth foliations, in prep. 
  8. [GO] D. GABAI & U. OERTEL, Essential laminations in 3-manifolds, Ann. Math., 130 (1989), 41-73. Zbl0685.57007MR90h:57012
  9. [Ha] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 3 (1962), 367-397. Zbl0122.40702MR32 #6487
  10. [HO] A. HATCHER & U. OERTEL, Personal communication. 
  11. [M] W.P. MENASCO, Closed incompressible surfaces in alternating knot and link complements, Topology, 23 (1984), 225-246. Zbl0525.57003MR86b:57004
  12. [N] S.P. NOVIKOV, Topology of foliations, Trans. Mos. Math. Soc., 14 (1963), 268-305. Zbl0247.57006MR34 #824
  13. [R] R. ROUSSERIE, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, IHES, 43 (1973), 101-142. Zbl0356.57017
  14. [Ro] H. ROSENBERG, Foliations by planes, Topology, 6 (1967), 131-138. Zbl0157.30504
  15. [Sc] M. SCHARLEMANN, Producing reducible manifolds by surgery on a knot, Topology, 29 (1990), 481-500. Zbl0727.57015MR91i:57003
  16. [T] W.P. THURSTON, A norm for the homology of 3-manifolds, Memoirs AMS, 339 (1986), 99-139. Zbl0585.57006MR88h:57014
  17. [Ti] S. TISCHLER, Totally parallelizable 3-manifolds, Topological dynamics, Auslander and Gottshalk eds. Benjamin (1968), 471-492. Zbl0201.56501MR38 #3884
  18. [W] Y. WU, Essential laminations in surgered manifolds, preprint. Zbl0746.57006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.