The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Taut foliations of 3-manifolds and suspensions of S 1

Smoothability of proper foliations

John Cantwell, Lawrence Conlon (1988)

Annales de l'institut Fourier

Similarity:

Compact, C 2 -foliated manifolds of codimension one, having all leaves proper, are shown to be C -smoothable. More precisely, such a foliated manifold is homeomorphic to one of class C . The corresponding statement is false for foliations with nonproper leaves. In that case, there are topological distinctions between smoothness of class C r and of class C r + 1 for every nonnegative integer r .

Regular projectively Anosov flows with compact leaves

Takeo Noda (2004)

Annales de l’institut Fourier

Similarity:

This paper concerns projectively Anosov flows φ t with smooth stable and unstable foliations s and u on a Seifert manifold M . We show that if the foliation s or u contains a compact leaf, then the flow φ t is decomposed into a finite union of models which are defined on T 2 × I and bounded by compact leaves, and therefore the manifold M is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which...

Limit sets of foliations

Richard Sacksteder, Art J. Schwartz (1965)

Annales de l'institut Fourier

Similarity:

Soit V une variété munie d’une structure feuilletée de co-dimension un. On démontre plusieurs théorème relatifs à des conditions entraînant que le groupe d’holonomie et le pseudo-groupe d’holonomie d’une certaine feuille F V est infini.