Area functionals and Godbillon-Vey cocycles

Takashi Tsuboi

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 1-2, page 421-447
  • ISSN: 0373-0956

Abstract

top
We investigate the natural domain of definition of the Godbillon-Vey 2- dimensional cohomology class of the group of diffeomorphisms of the circle. We introduce the notion of area functionals on a space of functions on the circle, we give a sufficiently large space of functions with nontrivial area functional and we give a sufficiently large group of Lipschitz homeomorphisms of the circle where the Godbillon-Vey class is defined.

How to cite

top

Tsuboi, Takashi. "Area functionals and Godbillon-Vey cocycles." Annales de l'institut Fourier 42.1-2 (1992): 421-447. <http://eudml.org/doc/74960>.

@article{Tsuboi1992,
abstract = {We investigate the natural domain of definition of the Godbillon-Vey 2- dimensional cohomology class of the group of diffeomorphisms of the circle. We introduce the notion of area functionals on a space of functions on the circle, we give a sufficiently large space of functions with nontrivial area functional and we give a sufficiently large group of Lipschitz homeomorphisms of the circle where the Godbillon-Vey class is defined.},
author = {Tsuboi, Takashi},
journal = {Annales de l'institut Fourier},
keywords = {Godbillon-Vey 2-dimensional cohomology class; group of diffeomorphisms of the circle; area functionals; Lipschitz homeomorphisms of the circle; Godbillon-Vey class},
language = {eng},
number = {1-2},
pages = {421-447},
publisher = {Association des Annales de l'Institut Fourier},
title = {Area functionals and Godbillon-Vey cocycles},
url = {http://eudml.org/doc/74960},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Tsuboi, Takashi
TI - Area functionals and Godbillon-Vey cocycles
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 1-2
SP - 421
EP - 447
AB - We investigate the natural domain of definition of the Godbillon-Vey 2- dimensional cohomology class of the group of diffeomorphisms of the circle. We introduce the notion of area functionals on a space of functions on the circle, we give a sufficiently large space of functions with nontrivial area functional and we give a sufficiently large group of Lipschitz homeomorphisms of the circle where the Godbillon-Vey class is defined.
LA - eng
KW - Godbillon-Vey 2-dimensional cohomology class; group of diffeomorphisms of the circle; area functionals; Lipschitz homeomorphisms of the circle; Godbillon-Vey class
UR - http://eudml.org/doc/74960
ER -

References

top
  1. [1] R. BOTT, On some formulas for the characteristic classes of group actions, Foliations and Gelfand-Fuks Cohomology, Proc. Rio de Janeiro, 1976, Lecture Notes in Math., Springer-Verlag, vol. 652 (1978). Zbl0393.57011
  2. [2] G. DUMINY et V. SERGIESCU, Sur la nullité de l'invariant de Godbillon-Vey, C. R. Acad. Sci. Paris, 292 (1981), 821-824. Zbl0473.57015MR84a:57024
  3. [3] E. GHYS, Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier, 37-4 (1987), 59-76. Zbl0633.58025MR89e:57023
  4. [4] E. GHYS, L'invariant de Godbillon-Vey, Seminaire Bourbaki, exposé n°706, 1988/1989. Zbl0707.57015
  5. [5] E. GHYS et V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., 62 (1987), 185-239. Zbl0647.58009MR90c:57035
  6. [6] C. GODBILLON et J. VEY, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris, 273 (1971), 92-95. Zbl0215.24604MR44 #1046
  7. [7] P. GREENBERG, Classifying spaces for foliations with isolated singularities, Transactions Amer. Math. Soc., 304 (1987), 417-429. Zbl0626.58030MR89a:57037
  8. [8] M. HERMAN, Sur la conjugaison differentiable des difféomorphismes du cercle à des rotations, Publ. Math. I. H. E. S., 49 (1979), 5-234. Zbl0448.58019MR81h:58039
  9. [9] S. HURDER and A. KATOK, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math. I. H. E. S., 72 (1990), 2-61. Zbl0725.58034
  10. [10] J. MATHER, The vanishing of the homology of certain groups of homeomorphisms, Topology, 10 (1971), 297-298. Zbl0207.21903MR44 #5973
  11. [11] J. MATHER, Integrability in codimension 1, Comm. Math. Helv., 48 (1973), 195-233. Zbl0284.57016MR50 #8556
  12. [12] J. MATHER, Commutators of diffeomorphisms I, II and III, Comm. Math. Helv., 49 (1974), 512-528; 50 (1975), 33-40; 60 (1985), 122-124. Zbl0299.58008MR50 #8600
  13. [13] J. MATHER, On the homology of Haefliger's classifying space, Differential Topology, (1976), 71-116. Zbl0469.57021
  14. [14] Y. MITSUMATSU, A relation between the topological invariance of the Godbillon-Vey invariant and the differentiability of Anosov foliations, Advanced Studies in Pure Math., 5, Foliations, (1985), 159-167. Zbl0653.57018MR88a:57050
  15. [15] W. THURSTON, Noncobordant foliations of S3, Bull. Amer. Math. Soc., 78 (1972), 511-514. Zbl0266.57004MR45 #7741
  16. [16] W. THURSTON, Foliations and groups of diffeomorphism, Bull. Amer. Math. Soc., 80 (1974), 304-307. Zbl0295.57014MR49 #4027
  17. [17] T. TSUBOI, On the homology of classifying spaces for foliated products, Advanced Studies in Pure Math., 5, Foliations, (1985), 37-120. Zbl0674.57023MR88f:57053
  18. [18] T. TSUBOI, On the foliated products of class C1, Annals of Math., 130 (1989), 227-271. Zbl0701.57012MR91a:57028
  19. [19] T. TSUBOI, On the Hurder-Katok extension of the Godbillon-Vey invariant, J. of Fac. Sci., Univ. of Tokyo, Sec. IA, 37 (1990), 255-262. Zbl0722.57012MR92d:57022
  20. [20] T. TSUBOI, Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle, preprint. Zbl0852.57031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.