# Area functionals and Godbillon-Vey cocycles

Annales de l'institut Fourier (1992)

- Volume: 42, Issue: 1-2, page 421-447
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topTsuboi, Takashi. "Area functionals and Godbillon-Vey cocycles." Annales de l'institut Fourier 42.1-2 (1992): 421-447. <http://eudml.org/doc/74960>.

@article{Tsuboi1992,

abstract = {We investigate the natural domain of definition of the Godbillon-Vey 2- dimensional cohomology class of the group of diffeomorphisms of the circle. We introduce the notion of area functionals on a space of functions on the circle, we give a sufficiently large space of functions with nontrivial area functional and we give a sufficiently large group of Lipschitz homeomorphisms of the circle where the Godbillon-Vey class is defined.},

author = {Tsuboi, Takashi},

journal = {Annales de l'institut Fourier},

keywords = {Godbillon-Vey 2-dimensional cohomology class; group of diffeomorphisms of the circle; area functionals; Lipschitz homeomorphisms of the circle; Godbillon-Vey class},

language = {eng},

number = {1-2},

pages = {421-447},

publisher = {Association des Annales de l'Institut Fourier},

title = {Area functionals and Godbillon-Vey cocycles},

url = {http://eudml.org/doc/74960},

volume = {42},

year = {1992},

}

TY - JOUR

AU - Tsuboi, Takashi

TI - Area functionals and Godbillon-Vey cocycles

JO - Annales de l'institut Fourier

PY - 1992

PB - Association des Annales de l'Institut Fourier

VL - 42

IS - 1-2

SP - 421

EP - 447

AB - We investigate the natural domain of definition of the Godbillon-Vey 2- dimensional cohomology class of the group of diffeomorphisms of the circle. We introduce the notion of area functionals on a space of functions on the circle, we give a sufficiently large space of functions with nontrivial area functional and we give a sufficiently large group of Lipschitz homeomorphisms of the circle where the Godbillon-Vey class is defined.

LA - eng

KW - Godbillon-Vey 2-dimensional cohomology class; group of diffeomorphisms of the circle; area functionals; Lipschitz homeomorphisms of the circle; Godbillon-Vey class

UR - http://eudml.org/doc/74960

ER -

## References

top- [1] R. BOTT, On some formulas for the characteristic classes of group actions, Foliations and Gelfand-Fuks Cohomology, Proc. Rio de Janeiro, 1976, Lecture Notes in Math., Springer-Verlag, vol. 652 (1978). Zbl0393.57011
- [2] G. DUMINY et V. SERGIESCU, Sur la nullité de l'invariant de Godbillon-Vey, C. R. Acad. Sci. Paris, 292 (1981), 821-824. Zbl0473.57015MR84a:57024
- [3] E. GHYS, Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier, 37-4 (1987), 59-76. Zbl0633.58025MR89e:57023
- [4] E. GHYS, L'invariant de Godbillon-Vey, Seminaire Bourbaki, exposé n°706, 1988/1989. Zbl0707.57015
- [5] E. GHYS et V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., 62 (1987), 185-239. Zbl0647.58009MR90c:57035
- [6] C. GODBILLON et J. VEY, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris, 273 (1971), 92-95. Zbl0215.24604MR44 #1046
- [7] P. GREENBERG, Classifying spaces for foliations with isolated singularities, Transactions Amer. Math. Soc., 304 (1987), 417-429. Zbl0626.58030MR89a:57037
- [8] M. HERMAN, Sur la conjugaison differentiable des difféomorphismes du cercle à des rotations, Publ. Math. I. H. E. S., 49 (1979), 5-234. Zbl0448.58019MR81h:58039
- [9] S. HURDER and A. KATOK, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math. I. H. E. S., 72 (1990), 2-61. Zbl0725.58034
- [10] J. MATHER, The vanishing of the homology of certain groups of homeomorphisms, Topology, 10 (1971), 297-298. Zbl0207.21903MR44 #5973
- [11] J. MATHER, Integrability in codimension 1, Comm. Math. Helv., 48 (1973), 195-233. Zbl0284.57016MR50 #8556
- [12] J. MATHER, Commutators of diffeomorphisms I, II and III, Comm. Math. Helv., 49 (1974), 512-528; 50 (1975), 33-40; 60 (1985), 122-124. Zbl0299.58008MR50 #8600
- [13] J. MATHER, On the homology of Haefliger's classifying space, Differential Topology, (1976), 71-116. Zbl0469.57021
- [14] Y. MITSUMATSU, A relation between the topological invariance of the Godbillon-Vey invariant and the differentiability of Anosov foliations, Advanced Studies in Pure Math., 5, Foliations, (1985), 159-167. Zbl0653.57018MR88a:57050
- [15] W. THURSTON, Noncobordant foliations of S3, Bull. Amer. Math. Soc., 78 (1972), 511-514. Zbl0266.57004MR45 #7741
- [16] W. THURSTON, Foliations and groups of diffeomorphism, Bull. Amer. Math. Soc., 80 (1974), 304-307. Zbl0295.57014MR49 #4027
- [17] T. TSUBOI, On the homology of classifying spaces for foliated products, Advanced Studies in Pure Math., 5, Foliations, (1985), 37-120. Zbl0674.57023MR88f:57053
- [18] T. TSUBOI, On the foliated products of class C1, Annals of Math., 130 (1989), 227-271. Zbl0701.57012MR91a:57028
- [19] T. TSUBOI, On the Hurder-Katok extension of the Godbillon-Vey invariant, J. of Fac. Sci., Univ. of Tokyo, Sec. IA, 37 (1990), 255-262. Zbl0722.57012MR92d:57022
- [20] T. TSUBOI, Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle, preprint. Zbl0852.57031

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.