P L representations of Anosov foliations

N. Hashiguchi

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 4, page 937-965
  • ISSN: 0373-0956

Abstract

top
By choosing certain Birkhoff’s section to the geodesic flow of a negatively curved closed surface, E. Ghys showed that the unstable foliation of the geodesic flow has a transversely piecewise linear structure. We explicitly describe the holonomy homomorphism induced by this transversely piecewise linear structure and calculate its discrete Godbillon-Vey invariant.

How to cite

top

Hashiguchi, N.. "$PL$ representations of Anosov foliations." Annales de l'institut Fourier 42.4 (1992): 937-965. <http://eudml.org/doc/74980>.

@article{Hashiguchi1992,
abstract = {By choosing certain Birkhoff’s section to the geodesic flow of a negatively curved closed surface, E. Ghys showed that the unstable foliation of the geodesic flow has a transversely piecewise linear structure. We explicitly describe the holonomy homomorphism induced by this transversely piecewise linear structure and calculate its discrete Godbillon-Vey invariant.},
author = {Hashiguchi, N.},
journal = {Annales de l'institut Fourier},
keywords = {Birkhoff's section to the geodesic flow of a negatively curved closed surface; unstable foliation; transversely piecewise linear structure; holonomy homomorphism; discrete Godbillon-Vey invariant},
language = {eng},
number = {4},
pages = {937-965},
publisher = {Association des Annales de l'Institut Fourier},
title = {$PL$ representations of Anosov foliations},
url = {http://eudml.org/doc/74980},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Hashiguchi, N.
TI - $PL$ representations of Anosov foliations
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 4
SP - 937
EP - 965
AB - By choosing certain Birkhoff’s section to the geodesic flow of a negatively curved closed surface, E. Ghys showed that the unstable foliation of the geodesic flow has a transversely piecewise linear structure. We explicitly describe the holonomy homomorphism induced by this transversely piecewise linear structure and calculate its discrete Godbillon-Vey invariant.
LA - eng
KW - Birkhoff's section to the geodesic flow of a negatively curved closed surface; unstable foliation; transversely piecewise linear structure; holonomy homomorphism; discrete Godbillon-Vey invariant
UR - http://eudml.org/doc/74980
ER -

References

top
  1. [CN] C. CAMACHO and A.L. NETO, Geometric Theory of Foliations, Birkhäuser, Boston, 1985. Zbl0568.57002
  2. [DS] G. DUMINY and V. SERGIESCU, Sur la nullité de l'invariant de Godbillon-Vey, C. R. Acad. Sci. Paris, 292 (1981), 821-824. Zbl0473.57015MR84a:57024
  3. [EM] S. EILENBERG and S. MACLANE, Relations between Homology and Homotopy Groups of Spaces, Ann. of Math., 46 (1945), 480-509. Zbl0061.40702MR7,137g
  4. [EHN] D. EISENBUD, U. HIRSCH and W. NEUMANN, Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helvetici, 56 (1981), 638-660. Zbl0516.57015MR83j:57016
  5. [F] D. FRIED, Transitive Anosov Flows and Pseudo-Anosov Maps, Topology, 22 (1983), 299-303. Zbl0516.58035MR84j:58095
  6. [Gh] E. GHYS, Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier, 37, 4 (1987), 59-76. Zbl0633.58025MR89e:57023
  7. [GS] E. GHYS and V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helvetici, 62 (1987), 185-239. Zbl0647.58009MR90c:57035
  8. [Gr] P. GREENBERG, Classifying spaces for foliations with isolated singularities, Trans. Amer. Math. Soc., 304 (1987), 417-429. Zbl0626.58030MR89a:57037
  9. [Ha1] N. HASHIGUCHI, On the Anosov diffeomorphisms corresponding to geodesic flows on negatively curved closed surfaces, J. Fac. Sci. Univ. Tokyo, 37 (1990), 485-494. Zbl0729.58040MR91k:58105
  10. [Ha2] N. HASHIGUCHI, On the rigidity of PL representations of a surface group, preprint. Zbl0829.57016
  11. [He] M. HERMAN, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Pub. Math., 49 (1978), 5-234. Zbl0448.58019MR81h:58039
  12. [Ma] B. MASKIT, On Poincaré's theorem for fundamental polygons, Adv. in Math., 7 (1971), 219-230. Zbl0223.30008MR45 #7049
  13. [Mi] J. MILNOR, On the 3-dimensional Brieskorn manifold M (p, q, r), in Knots, Groups and 3-Manifolds, Ann. of Math. Studies, 84 (1975), 175-225, Princeton. Zbl0305.57003MR54 #6169
  14. [T] T. TSUBOI, Area functionals and Godbillon-Vey cocycles, Ann. Inst. Fourier, 42, 1-2 (1992), 421-447. Zbl0759.57019MR94g:57032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.