Deformation of polar methods

David B. Massey; Dirk Siersma

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 4, page 737-778
  • ISSN: 0373-0956

Abstract

top
We study deformations of hypersurfaces with one-dimensional singular loci by two different methods. The first method is by using the Le numbers of a hypersurfaces singularity — this falls under the general heading of a “polar” method. The second method is by studying the number of certain special types of singularities which occur in generic deformations of the original hypersurface. We compare and contrast these two methods, and provide a large number of examples.

How to cite

top

Massey, David B., and Siersma, Dirk. "Deformation of polar methods." Annales de l'institut Fourier 42.4 (1992): 737-778. <http://eudml.org/doc/74972>.

@article{Massey1992,
abstract = {We study deformations of hypersurfaces with one-dimensional singular loci by two different methods. The first method is by using the Le numbers of a hypersurfaces singularity — this falls under the general heading of a “polar” method. The second method is by studying the number of certain special types of singularities which occur in generic deformations of the original hypersurface. We compare and contrast these two methods, and provide a large number of examples.},
author = {Massey, David B., Siersma, Dirk},
journal = {Annales de l'institut Fourier},
keywords = {hypersurface singularities; deformations; vanishing homology; Lê numbers},
language = {eng},
number = {4},
pages = {737-778},
publisher = {Association des Annales de l'Institut Fourier},
title = {Deformation of polar methods},
url = {http://eudml.org/doc/74972},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Massey, David B.
AU - Siersma, Dirk
TI - Deformation of polar methods
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 4
SP - 737
EP - 778
AB - We study deformations of hypersurfaces with one-dimensional singular loci by two different methods. The first method is by using the Le numbers of a hypersurfaces singularity — this falls under the general heading of a “polar” method. The second method is by studying the number of certain special types of singularities which occur in generic deformations of the original hypersurface. We compare and contrast these two methods, and provide a large number of examples.
LA - eng
KW - hypersurface singularities; deformations; vanishing homology; Lê numbers
UR - http://eudml.org/doc/74972
ER -

References

top
  1. [Di1] A. DIMCA, Betti numbers of hypersurfaces and defects of linear systems, Duke Math. Journ., 60 (1) (1990), 285-298. Zbl0729.14017MR91f:14041
  2. [Di2] A. DIMCA, On the Milnor fibration of weighted homogeneous polynomials, Compositio Mathematica, 76 (1990), 19-47. Zbl0726.14002MR91m:32038
  3. [Fu] W. FULTON, Intersection Theory, Ergebnisse der Math., Springer-Verlag, 1984. Zbl0541.14005MR85k:14004
  4. [Ga1] T. GAFFNEY, Polar Multiplicities and Equisingularity of Map Germs, Topology (to appear). Zbl0790.57020
  5. [Ga2] T. GAFFNEY, handwritten note. 
  6. [Ga-Mo] T. GAFFNEY and D. Q. M. MOND, Cusps and double folds of germs of analytic maps ℂ2 → ℂ2, Journ. London Math. Soc. (to appear). Zbl0737.58007
  7. [Gi1] M. GIUSTI, Sur les singularités isolées d'intersections complète quasi-homogènes, Ann. Inst. Fourier, Grenoble, 27-3 (1977), 163-192. Zbl0353.14003MR57 #702
  8. [Gi2] M. GIUSTI, Intersections complète quasi-homogènes : calcule d'invariants (These: Université Paris VII, 1981) Prépublication du Centre Mathématiques de l'Ecole Polytechnique (1979), 69-99. 
  9. [GoMac] M. GORESKY and R. MACPHERSON, Ergebnisse der Math. 14 (1988), Stratified Morse Theory, Springer-Verlag. Zbl0639.14012
  10. [Io1] I.N. IOMDIN, Local topological properties of complex algebraic sets, Sibirsk. Mat. Z., 15 (4) (1974), 784-805. 
  11. [Io2] I.N. IOMDIN, Variétés complexes avec singularités de dimension un, Sibirsk. Mat. Z., 15 (1974), 1061-1082. Zbl0325.32003
  12. [Jo1] Th. de JONG, Some classes of line singularities, Math. Zeitschrift, 198 (1988), 493-517. Zbl0628.32028MR90a:32013
  13. [Jo2] Th. de JONG, The virtual number of D∞ points I, Topology, 29 (1990), 175-184. Zbl0752.32010MR91f:32043
  14. [JoSt1] Th. de JONG, D. van STRATEN, A deformation Theory for Non-Isolated Singularities, Abh. Math. Sem. Univ. Hamburg, 60, 177-208. Zbl0721.32014
  15. [JoSt2] Th. de JONG, D. van STRATEN, Deformations of the Normalizations of Hypersurfaces, Math. Annalen, 228, 527-547. Zbl0715.32013
  16. [JoSt3] Th. de JONG, D. van STRATEN, Disentanglements, Singularity Theory and its Applications, Warwick 1989, Part I ; Lecture Notes in Mathematics, 1462, 199-211. Zbl0734.32020
  17. [KM] M. KATO and Y. MATSUMOTO, On the connectivity of the Milnor fibre of a holomorphic function at a critical point, Proc. 1973 Tokyo Manifolds Conf., 131-136. Zbl0309.32008
  18. [Lê1] D.T. LÊ, Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann. Inst. Fourier, Grenoble, 23-4 (1973), 261-270. Zbl0293.32013
  19. [Lê2] D.T. LÊ, Ensembles analytiques complexes avec lieu singulier de dimension un (d'après I.N. Jomdin), Séminaire sur les Singularités (Paris, 1976-1977), Publ. Math. Univ. Paris VII (1980), 87-95. 
  20. [Lê3] D.T. LÊ, Une application d'un théorème d'A'Campo a l'équisingularité, Indag. Math., 35 (1973), 403-409. Zbl0271.14001
  21. [Ma1] D. MASSEY, The Lê - Ramanujam Problem for Hypersurfaces with One - Dimensional Singular Sets, Math. Ann., 282 (1988), 33-49. Zbl0657.32005MR89k:32015
  22. [Ma2] D. MASSEY, The Lê Varieties, I, Invent. Math., 99 (1990), 357-376. Zbl0712.32020MR91a:32053
  23. [Ma3] D. MASSEY, The Lê Varieties, II, Invent. Math., 104 (1991), 113-148. Zbl0727.32015MR92c:32049
  24. [Ma4] D. MASSEY, The Thom Condition along a Line, Duke Math. Journ., 60 (1990), 631-642. Zbl0709.32026MR91f:32047
  25. [Mi] J. MILNOR, Singular Points of Complex Hypersurfaces, Princeton University Press, Ann. Math. Studies, 1968. Zbl0184.48405MR39 #969
  26. [MiOr] J. MILNOR and P. ORLIK, Isolated Singularities Defined by Weighted Homogeneous Polynomials, Topology, 9 (1969), 385-393. Zbl0204.56503MR45 #2757
  27. [Mo1] D.M.Q. MOND, Some remarks on the geometry and classification of germs of maps from surfaces to 3-space, Topology, 26, 3 (1987), 361-383. Zbl0654.32008MR88j:32014
  28. [Mo2] D.M.Q. MOND, Vanishing cycles for analytic maps, Singularity Theory and its Applications, Warwick 1989, Part I ; Lecture Notes in Mathematics, 1462, 221-234. Zbl0745.32020MR93a:32054
  29. [Ne1] A. NEMETHI, On the fundamental group of the complement of certain singular plane curves, Math. Proc. Camb. Phil. Soc., 102 (1987), 453-457. Zbl0679.14004MR88m:14020
  30. [Ne2] A. NEMETHI, The Milnor fibre and the zeta function of the singularities of the type f = P(h,g), Compositio Mathematica, 79, 63-97. Zbl0724.32020MR93a:32058
  31. [Ok] M. OKA, On the fundamental group of the complement of certain plane curves, J. Math. Soc. Japan, (4) 30 (1978), 579-597. Zbl0387.14004MR80d:14017
  32. [Pe1] G. R. PELLIKAAN, Hypersurface singularities and resolutions of Jacobi modules, Thesis, Rijksuniversiteit Utrecht (1985). Zbl0589.32017MR87j:32024
  33. [Pe2] G.R. PELLIKAAN, Deformations of hypersurfaces with a one-dimensional critical locus, Journal of Pure and Applied Algebra, 67, 49-71. Zbl0733.32026
  34. [Pe3] G.R. PELLIKAAN, Series of isolated singularities, Contemp. Math., 90 (1989), 241-259. Zbl0675.32009MR90k:32044
  35. [Ra] R. RANDELL, On the topology of non-isolated singularities, Proc. 1977 Georgia Topology Conference, (1979), 445-473. Zbl0473.57007MR80f:14002
  36. [Sa] M. SAITO, On Steenbrink's Conjecture, Mathematische Annalen, 289, 703-716. Zbl0712.14002MR92e:32021
  37. [Sc] R. SCHRAUWEN, Deformations and the Milnor number of non-isolated plane curve singularities, Singularity Theory and its Applications, Warwick 1989, Part I ; Lecture Notes in Mathematics, 1462, 276-291. Zbl0734.32021MR92j:32128
  38. [Si1] D. SIERSMA, Isolated Line Singularities, Proc. Symp. Pure Math., 40 (part 2) (1983), 485-496. Zbl0514.32007MR85d:32017
  39. [Si2] D. SIERSMA, Hypersurfaces with singular locus a plane curve and transversal type A1, Singularities, 40 (1988), 397-410, Banach Center Publ., Warsaw. Zbl0662.32011MR92a:32044
  40. [Si3] D. SIERSMA, Singularities with critical locus a 1-dimensional complete intersection and transversal type A1, Topology and its Applications, 27 (1987), 51-73. Zbl0635.32006MR88m:32015
  41. [Si4] D. SIERSMA, Quasi-homogeneous singularities with transversal type A1, Contemporary Math., 90 (1989), 261-294. Zbl0682.32012MR91a:32050
  42. [Si5] D. SIERSMA, The monodromy of a series of hypersurface singularities, Comment. Math. Helvetici, 65, 181-195. Zbl0723.32015MR91h:32034
  43. [Si6] D. SIERSMA, Variation Mappings on singularities with a 1-dimensional critical locus, Topology, 30, 445-469. Zbl0746.32014MR92e:32022
  44. [Si7] D. SIERSMA, Vanishing cycles and special fibres, Singularity Theory and its Applications, Warwick 1989, Part I ; Lecture Notes in Mathematics, 1462, 292-301. Zbl0746.32015MR92j:32129
  45. [SiTr] Y. T. SIU and G. TRAUTMANN, Gap-Sheaves and Extension of Coherent Analytic Subsheaves, S.L.N. 172, Springer-Verlag, 1971. Zbl0208.10403MR44 #4240
  46. [St] J. H. M. STEENBRINK, The spectrum of hypersurface singularities, Theory de Hodge ; Luminy, juin 1987 ; Astérisque, 179-180, 163-184. Zbl0725.14031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.