Matrix triangulation of hypoelliptic boundary value problems
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 4, page 805-824
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArtino, R. A., and Barros-Neto, J.. "Matrix triangulation of hypoelliptic boundary value problems." Annales de l'institut Fourier 42.4 (1992): 805-824. <http://eudml.org/doc/74974>.
@article{Artino1992,
abstract = {Given a hypoelliptic boundary value problem on $\omega \times [0,T)$ with $\omega $ an open set in $\{\bf R\}^ n$, $(n>1)$, we show by matrix triangulation how to reduce it to two uncoupled first order systems, and how to estimate the eigenvalues of the corresponding matrices. Parametrices for the first order systems are constructed. We then characterize hypoellipticity up to the boundary in terms of the Calderon operator corresponding to the boundary value problem.},
author = {Artino, R. A., Barros-Neto, J.},
journal = {Annales de l'institut Fourier},
keywords = {parametrix; regularity up to the boundary; Calderon operator},
language = {eng},
number = {4},
pages = {805-824},
publisher = {Association des Annales de l'Institut Fourier},
title = {Matrix triangulation of hypoelliptic boundary value problems},
url = {http://eudml.org/doc/74974},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Artino, R. A.
AU - Barros-Neto, J.
TI - Matrix triangulation of hypoelliptic boundary value problems
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 4
SP - 805
EP - 824
AB - Given a hypoelliptic boundary value problem on $\omega \times [0,T)$ with $\omega $ an open set in ${\bf R}^ n$, $(n>1)$, we show by matrix triangulation how to reduce it to two uncoupled first order systems, and how to estimate the eigenvalues of the corresponding matrices. Parametrices for the first order systems are constructed. We then characterize hypoellipticity up to the boundary in terms of the Calderon operator corresponding to the boundary value problem.
LA - eng
KW - parametrix; regularity up to the boundary; Calderon operator
UR - http://eudml.org/doc/74974
ER -
References
top- [1] S. AGMON, A. DOUGLIS, L. NIRENBERG, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Operators Satisfying General Boundary Conditions, I Comm. Pure Appl. Math., 12 (1959), 623-727 ; II Comm. Pure Appl. Math., 17 (1964), 35-92. Zbl0123.28706
- [2] M.S. AGRANOVICH, Boundary Value Problems for Systems of First Order Pseudodifferential Operators, Russian Math. Surveys, 24 (1969), 59-126. Zbl0193.06605MR91h:35234
- [3] R. A. ARTINO & J. BARROS-NETO, The Factorization of Hypoelliptic Pseudodifferential Operators, to appear. Zbl0802.35174
- [4] R. A. ARTINO & J. BARROS-NETO, Hypoelliptic Boundary Value Problems, Lecture Notes in Pure and Applied Mathematics, vol. 53, Marcel Dekker, Inc., New York, (1980). Zbl0422.35021MR81k:35031
- [5] R. A. ARTINO & J. BARROS-NETO, A Construction of a Parametrix for an Elliptic Boundary Value Problem, to appear in Portugaliae Mathematica. Zbl0824.35152
- [6] J. BARROS-NETO, The Parametrix of Regular Hypoelliptic Boundary Value Problems, Ann. Sc. Norm. Sup. di Pisa, vol. XXVI, Fasc. I (1972), 247-268. Zbl0235.35026MR57 #16952
- [7] L. BOUTET DE MONVEL, Boundary Value Problems for Elliptic Pseudodifferential Equations, Acta Math., 126 (1971), 11-51. Zbl0206.39401MR53 #11674
- [8] A. P. CALDERON, Boundary Value Problems for Elliptic Equations, Proceedings of the Joint Soviet - American Symposium on Partial Differential Equations, Novosibirsk Acad. Sci. USSR, 1-4 (1963).
- [9] I.G. ESKIN, Boundary Value Problems for Elliptic Pseudodifferential Equations, Nauka, Moscow, 1973.
- [10] L. HÖRMANDER, On the Regularity of the Solutions of Boundary Value Problems, Acta Math., 99 (1958), 225-264. Zbl0083.09201
- [11] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators II, Springer-Verlag, Berlin (1983). Zbl0521.35001
- [12] L. HÖRMANDER, On the Interior Regularity of Solutions of Partial Differential Operators, Comm. Pure and Appl. Math., vol XI (1958). Zbl0081.31501
- [13] L. HÖRMANDER, Pseudodifferential Operators and Hypoelliptic Equations, Proc. of Symposia in Pure Mathematics, vol. X (1967), 138-183. Zbl0167.09603
- [14] H. KUMANO-GO, Pseudodifferential Operators, The MIT Press, Cambridge, Mass. and London, England, 1981. Zbl0453.47026MR84c:35113
- [15] Y. LOPATINSKI, On a Method of Reducing Boundary Problems for a System of Differential Equations of Elliptic Type to Regular Equations, Ukrain. Math. Z., 5 (1953), 123-151.
- [16] B. MALGRANGE, Sur une Classe d'Opérateurs Différentiels Hypoelliptiques, Bull. Soc. Math. France, 85 (1957), 282-306. Zbl0082.09303MR21 #5063
- [17] X. J. PING, The Factorization of Hypoelliptic Operators with Constant Strength (unpublished).
- [18] M. E. TAYLOR, Pseudodifferential Operators, Princeton University Press, Princeton, N.J. (1981). Zbl0453.47026MR82i:35172
- [19] F. TREVES, Introduction to Pseudodifferential Operators and Fourier Integral Operators (2 vols.), Plenum, New York, 1980. Zbl0453.47027
- [20] M.I. VISIK, G.I. ESKIN, Convolution Equations in a Bounded Region, Russian Math. Surveys, 20-3 (1965), 86-152. Zbl0152.34202
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.