Notes on interpolation of Hardy spaces

Quanhua Xu

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 4, page 875-889
  • ISSN: 0373-0956

Abstract

top
Let H p denote the usual Hardy space of analytic functions on the unit disc ( 0 < p ) . We prove that for every function f H 1 there exists a linear operator T defined on L 1 ( T ) which is simultaneously bounded from L 1 ( T ) to H 1 and from L ( T ) to H such that T ( f ) = f . Consequently, we get the following results ( 1 p 0 , p 1 ) :1) ( H p 0 , H p 1 ) is a Calderon-Mitjagin couple;2) for any interpolation functor F , we have F ( H p 0 , H p 1 ) = H ( F ( L p 0 ( T ) , L p 1 ( T ) ) ) , where H ( F ( L p 0 ( T ) , L p 1 ( T ) ) ) denotes the closed subspace of F ( L p 0 ( T ) , L p 1 ( T ) ) of all functions whose Fourier coefficients vanish on negative integers.These results also extend to Hardy spaces associated to general rearrangement invariant spaces on the unit circle.

How to cite

top

Xu, Quanhua. "Notes on interpolation of Hardy spaces." Annales de l'institut Fourier 42.4 (1992): 875-889. <http://eudml.org/doc/74977>.

@article{Xu1992,
abstract = {Let $H_ p$ denote the usual Hardy space of analytic functions on the unit disc $(0&lt; p\le \infty )$. We prove that for every function $f\in H_ 1$ there exists a linear operator $T$ defined on $L_ 1(\{\bf T\})$ which is simultaneously bounded from $L_ 1(\{\bf T\})$ to $H_ 1$ and from $L_ \infty (\{\bf T\})$ to $H_ \infty $ such that $T(f)=f$. Consequently, we get the following results $(1\le p_ 0,p_ 1\le \infty )$:1) $(H_\{p_ 0\},H_\{p_ 1\})$ is a Calderon-Mitjagin couple;2) for any interpolation functor $F$, we have $F(H_\{p_ 0\},H_\{p_ 1\})=H(F(L_\{p_ 0\}(\{\bf T\}),L_\{p_ 1\}(\{\bf T\})))$, where$H(F(L_\{p_ 0\}(\{\bf T\}),L_\{p_ 1\}(\{\bf T\})))$ denotes the closed subspace of $F(L_\{p_ 0\}(\{\bf T\}),L_\{p_ 1\}(\{\bf T\}))$ of all functions whose Fourier coefficients vanish on negative integers.These results also extend to Hardy spaces associated to general rearrangement invariant spaces on the unit circle.},
author = {Xu, Quanhua},
journal = {Annales de l'institut Fourier},
keywords = {Hardy space of analytic functions on the unit disc; Calderón-Mitjagin couple; interpolation functor; rearrangement invariant spaces on the unit circle},
language = {eng},
number = {4},
pages = {875-889},
publisher = {Association des Annales de l'Institut Fourier},
title = {Notes on interpolation of Hardy spaces},
url = {http://eudml.org/doc/74977},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Xu, Quanhua
TI - Notes on interpolation of Hardy spaces
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 4
SP - 875
EP - 889
AB - Let $H_ p$ denote the usual Hardy space of analytic functions on the unit disc $(0&lt; p\le \infty )$. We prove that for every function $f\in H_ 1$ there exists a linear operator $T$ defined on $L_ 1({\bf T})$ which is simultaneously bounded from $L_ 1({\bf T})$ to $H_ 1$ and from $L_ \infty ({\bf T})$ to $H_ \infty $ such that $T(f)=f$. Consequently, we get the following results $(1\le p_ 0,p_ 1\le \infty )$:1) $(H_{p_ 0},H_{p_ 1})$ is a Calderon-Mitjagin couple;2) for any interpolation functor $F$, we have $F(H_{p_ 0},H_{p_ 1})=H(F(L_{p_ 0}({\bf T}),L_{p_ 1}({\bf T})))$, where$H(F(L_{p_ 0}({\bf T}),L_{p_ 1}({\bf T})))$ denotes the closed subspace of $F(L_{p_ 0}({\bf T}),L_{p_ 1}({\bf T}))$ of all functions whose Fourier coefficients vanish on negative integers.These results also extend to Hardy spaces associated to general rearrangement invariant spaces on the unit circle.
LA - eng
KW - Hardy space of analytic functions on the unit disc; Calderón-Mitjagin couple; interpolation functor; rearrangement invariant spaces on the unit circle
UR - http://eudml.org/doc/74977
ER -

References

top
  1. [1] C. BENNETT, R. SHARPLEY, Interpolation of operators, Pure and applied Mathematics, 129, Academic Press, 1988. Zbl0647.46057MR89e:46001
  2. [2] J. BERGH, J. LÖFFSTRÖM, Interpolation spaces, An introduction, Berlin-Heidelberg-New York, Springer-Verlag, 1976. Zbl0344.46071
  3. [3] J. BOURGAIN, Bilinear forms on H∞ and bounded bianalytic functions, Trans. Amer. Math. Soc., 286 (1984), 313-338. Zbl0572.46048MR86c:46060
  4. [4] A.P. CALDERÓN, Spaces between L1 and L∞ and the theorem of Marcinkiewicz, Studia Math., 26 (1966), 273-299. Zbl0149.09203MR34 #3295
  5. [5] M. CWIKEL, Monotonicity properties of interpolation spaces, Ark. Mat., 14 (1976), 213-236. Zbl0339.46024MR56 #1095
  6. [6] J.B. GARNETT, Bounded analytic functions, Pure and Applied Mathematics 96, Academic Press, 1981. Zbl0469.30024MR83g:30037
  7. [7] G.H. HARDY, J.E. LITTLEWOOD, G. PÓLYA, Inequalities, Cambridge University Press, Cambridge, 1934 (2nd ed., 1952). Zbl0010.10703JFM60.0169.01
  8. [8] P.W. JONES, L∞-estimates for the ∂-problem in the half-plane, Acta Math., 150 (1983), 137-152. Zbl0516.35060MR84g:35135
  9. [9] P.W. JONES, On interpolation between H1 and H∞, Lect. Notes in Math. Springer, 1070 (1984), 143-151. Zbl0573.46044MR86c:46021
  10. [10] S.V. KISLIAKOV, Extension of (q,p)-summing operators defined on the disc-algebra with an appendix on Bourgain's analytic projections, preprint, 1990. 
  11. [11] S.V. KISLIAKOV, Truncating functions in weighted Hp and two theorems of J. Bourgain, preprint, 1989. 
  12. [12] S.V. KISLIAKOV, (q,p)-summing operators on the disc algebra and a weighted estimate for certain outer functions, LOMI, preprint E-11-89, Leningrad, 1989. 
  13. [13] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces II, Berlin-New York, Springer-Verlag, 1979. Zbl0403.46022MR81c:46001
  14. [14] G.G. LORENTZ, T. SHIMOGAKI, Interpolation theorems for the pairs of spaces (Lp, L∞) and (L1, Lq), Trans. Amer. Math. Soc., 59 (1971), 207-221. Zbl0244.46044MR52 #1347
  15. [15] P.F.X. MÜLLER, Holomorphic martingales and interpolation between Hardy spaces, to appear in J. d'Analyse Math.. Zbl0796.60051
  16. [16] G. PISIER, Interpolation between Hp spaces and non-commutative generalizations, preprint, 1991. 
  17. [17] G. SPARR, Interpolation of weighted Lp-spaces, Studia Math., 62 (1973), 229-236. Zbl0393.46029MR80d:46055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.