Partial retractions for weighted Hardy spaces

Sergei Kisliakov; Quanhua Xu

Studia Mathematica (2000)

  • Volume: 138, Issue: 3, page 251-264
  • ISSN: 0039-3223

Abstract

top
Let 1 ≤ p ≤ ∞ and let w 0 , w 1 be two weights on the unit circle such that l o g ( w 0 w 1 - 1 ) B M O . We prove that the couple ( H p ( w 0 ) , H p ( w 1 ) ) of weighted Hardy spaces is a partial retract of ( L p ( w 0 ) , L p ( w 1 ) ) . This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.

How to cite

top

Kisliakov, Sergei, and Xu, Quanhua. "Partial retractions for weighted Hardy spaces." Studia Mathematica 138.3 (2000): 251-264. <http://eudml.org/doc/216703>.

@article{Kisliakov2000,
abstract = {Let 1 ≤ p ≤ ∞ and let $w_0, w_1$ be two weights on the unit circle such that $log(w_0w_1^\{-1\})∈ BMO$. We prove that the couple $(H_p(w_0), H_p(w_1))$ of weighted Hardy spaces is a partial retract of $(L_p(w_0), L_p(w_1))$. This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.},
author = {Kisliakov, Sergei, Xu, Quanhua},
journal = {Studia Mathematica},
keywords = {partial retraction; interpolation; weighted Hardy space; BMO; Hardy space; weight},
language = {eng},
number = {3},
pages = {251-264},
title = {Partial retractions for weighted Hardy spaces},
url = {http://eudml.org/doc/216703},
volume = {138},
year = {2000},
}

TY - JOUR
AU - Kisliakov, Sergei
AU - Xu, Quanhua
TI - Partial retractions for weighted Hardy spaces
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 3
SP - 251
EP - 264
AB - Let 1 ≤ p ≤ ∞ and let $w_0, w_1$ be two weights on the unit circle such that $log(w_0w_1^{-1})∈ BMO$. We prove that the couple $(H_p(w_0), H_p(w_1))$ of weighted Hardy spaces is a partial retract of $(L_p(w_0), L_p(w_1))$. This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
LA - eng
KW - partial retraction; interpolation; weighted Hardy space; BMO; Hardy space; weight
UR - http://eudml.org/doc/216703
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071
  2. [2] Yu. A. Brudnyi and N. Ya. Krugljak, Real Interpolation Functors and Interpolation Spaces I, North-Holland, 1991. 
  3. [3] F. Cobos and J. Peetre, Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc. 63 (1991), 371-400. Zbl0702.46047
  4. [4] R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. Math. 43 (1982), 203-229. Zbl0501.46065
  5. [5] M. Cwikel, J. E. McCarty and T. H. Wolff, Interpolation between weighted Hardy spaces, Proc. Amer. Math. Soc. 116 (1992), 381-388. 
  6. [6] S. Janson, Interpolation of subcouples and quotient couples, Ark. Mat. 31 (1993), 307-338. Zbl0803.46080
  7. [7] N. Kalton, Complex interpolation of Hardy-type subspaces, Math. Nachr. 171 (1995), 227-258. Zbl0837.46015
  8. [8] S. V. Kisliakov, Interpolation of H p -spaces: some recent developments, in: Function Spaces, Interpolation Spaces, and Related Topics, Israel Math. Conf. Proc. 13, Bar-Ilan Univ., Ramat Gan, 1999, 102-140. Zbl0956.46018
  9. [9] S. V. Kisliakov, Bourgain's analytic projection revisited, Proc. Amer. Math. Soc. 126 (1998), 3307-3314. Zbl0902.30025
  10. [10] S. V. Kisliakov and Q. Xu, Interpolation of Hardy spaces, Trans. Amer. Math. Soc. 343 (1994), 1-34. Zbl0806.46026
  11. [11] S. V. Kisliakov and Q. Xu, Real interpolation and singular integrals, St. Petersburg Math. J. 8 (1997), 593-615. 
  12. [12] G .Pisier, Interpolation between H p spaces and non-commutative generalizations, I, Pacific J. Math. 155 (1992), 341-368. Zbl0747.46050
  13. [13] Q. Xu, Notes on interpolation of Hardy spaces, Ann. Inst. Fourier (Grenoble) 42 (1992), 875-889; Erratum, 43 (1993), 569. Zbl0760.46060
  14. [14] Q. Xu, New results on interpolation of Hardy spaces, in: Banach Space Theory and its Applications (Wuhan, 1994), Wuhan Univ. Press, 1996, 13-31. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.