Partial retractions for weighted Hardy spaces
Studia Mathematica (2000)
- Volume: 138, Issue: 3, page 251-264
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topKisliakov, Sergei, and Xu, Quanhua. "Partial retractions for weighted Hardy spaces." Studia Mathematica 138.3 (2000): 251-264. <http://eudml.org/doc/216703>.
@article{Kisliakov2000,
abstract = {Let 1 ≤ p ≤ ∞ and let $w_0, w_1$ be two weights on the unit circle such that $log(w_0w_1^\{-1\})∈ BMO$. We prove that the couple $(H_p(w_0), H_p(w_1))$ of weighted Hardy spaces is a partial retract of $(L_p(w_0), L_p(w_1))$. This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.},
author = {Kisliakov, Sergei, Xu, Quanhua},
journal = {Studia Mathematica},
keywords = {partial retraction; interpolation; weighted Hardy space; BMO; Hardy space; weight},
language = {eng},
number = {3},
pages = {251-264},
title = {Partial retractions for weighted Hardy spaces},
url = {http://eudml.org/doc/216703},
volume = {138},
year = {2000},
}
TY - JOUR
AU - Kisliakov, Sergei
AU - Xu, Quanhua
TI - Partial retractions for weighted Hardy spaces
JO - Studia Mathematica
PY - 2000
VL - 138
IS - 3
SP - 251
EP - 264
AB - Let 1 ≤ p ≤ ∞ and let $w_0, w_1$ be two weights on the unit circle such that $log(w_0w_1^{-1})∈ BMO$. We prove that the couple $(H_p(w_0), H_p(w_1))$ of weighted Hardy spaces is a partial retract of $(L_p(w_0), L_p(w_1))$. This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
LA - eng
KW - partial retraction; interpolation; weighted Hardy space; BMO; Hardy space; weight
UR - http://eudml.org/doc/216703
ER -
References
top- [1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin, 1976. Zbl0344.46071
- [2] Yu. A. Brudnyi and N. Ya. Krugljak, Real Interpolation Functors and Interpolation Spaces I, North-Holland, 1991.
- [3] F. Cobos and J. Peetre, Interpolation of compact operators: the multidimensional case, Proc. London Math. Soc. 63 (1991), 371-400. Zbl0702.46047
- [4] R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. Math. 43 (1982), 203-229. Zbl0501.46065
- [5] M. Cwikel, J. E. McCarty and T. H. Wolff, Interpolation between weighted Hardy spaces, Proc. Amer. Math. Soc. 116 (1992), 381-388.
- [6] S. Janson, Interpolation of subcouples and quotient couples, Ark. Mat. 31 (1993), 307-338. Zbl0803.46080
- [7] N. Kalton, Complex interpolation of Hardy-type subspaces, Math. Nachr. 171 (1995), 227-258. Zbl0837.46015
- [8] S. V. Kisliakov, Interpolation of -spaces: some recent developments, in: Function Spaces, Interpolation Spaces, and Related Topics, Israel Math. Conf. Proc. 13, Bar-Ilan Univ., Ramat Gan, 1999, 102-140. Zbl0956.46018
- [9] S. V. Kisliakov, Bourgain's analytic projection revisited, Proc. Amer. Math. Soc. 126 (1998), 3307-3314. Zbl0902.30025
- [10] S. V. Kisliakov and Q. Xu, Interpolation of Hardy spaces, Trans. Amer. Math. Soc. 343 (1994), 1-34. Zbl0806.46026
- [11] S. V. Kisliakov and Q. Xu, Real interpolation and singular integrals, St. Petersburg Math. J. 8 (1997), 593-615.
- [12] G .Pisier, Interpolation between spaces and non-commutative generalizations, I, Pacific J. Math. 155 (1992), 341-368. Zbl0747.46050
- [13] Q. Xu, Notes on interpolation of Hardy spaces, Ann. Inst. Fourier (Grenoble) 42 (1992), 875-889; Erratum, 43 (1993), 569. Zbl0760.46060
- [14] Q. Xu, New results on interpolation of Hardy spaces, in: Banach Space Theory and its Applications (Wuhan, 1994), Wuhan Univ. Press, 1996, 13-31.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.