An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 1, page 125-142
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCano, José. "An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms." Annales de l'institut Fourier 43.1 (1993): 125-142. <http://eudml.org/doc/74984>.
@article{Cano1993,
abstract = {We give a proof of the fact that any holomorphic Pfaffian form in two variables has a convergent integral curve. The proof gives an effective method to construct the solution, and we extend it to get a Gevrey type solution for a Gevrey form.},
author = {Cano, José},
journal = {Annales de l'institut Fourier},
keywords = {Newton polygon; holomorphic; Pfaffian form; convergent integral curve; Gevrey type solution; Gevrey form},
language = {eng},
number = {1},
pages = {125-142},
publisher = {Association des Annales de l'Institut Fourier},
title = {An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms},
url = {http://eudml.org/doc/74984},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Cano, José
TI - An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 1
SP - 125
EP - 142
AB - We give a proof of the fact that any holomorphic Pfaffian form in two variables has a convergent integral curve. The proof gives an effective method to construct the solution, and we extend it to get a Gevrey type solution for a Gevrey form.
LA - eng
KW - Newton polygon; holomorphic; Pfaffian form; convergent integral curve; Gevrey type solution; Gevrey form
UR - http://eudml.org/doc/74984
ER -
References
top- [1] I. BENDIXON, Sur les points singuliers des équations différentiels, Ofv. Kongl. Vetenskaps Akademiens Förhandlinger, Stokholm, 9 # 186 (1898), 635-658. JFM29.0275.01
- [2] C.A. BRIOT and J.C. BOUQUET, Propriétés des fonctions définies par des équations différentiels, Journal de l'Ecole Polytechnique, 36 (1856), 133-198.
- [3] C. CAMACHO and P. SAD, Invariant varieties through singularities of holomorphic vector fields, Annals of Mathematics, 115 (1982), 579-595. Zbl0503.32007MR83m:58062
- [4] F. CANO, Desingularizations of plane vector fields, Transactions of the A.M.S., 296 (1986), 83-93. Zbl0612.14011MR87j:14009
- [5] J. CANO, On the series definied by differential equations, with an extension of the Puiseux Polygon construction to these equations, to appear in the International Mathematical Journal of Analysis and its Applications. Zbl0793.34009
- [6] H.B. FINE, On the Functions Definied by Differential Equations, with an Extension of the Puiseux Polygon Construction to these Equations, Amer. Jour. of Math., XI (1889), 317-328. Zbl21.0302.01JFM21.0302.01
- [7] H.B. FINE, Singular Solutions of Ordinary Differential Equations, Amer. Jour. of Math., XII (1890), 295-322. Zbl22.0302.02JFM22.0302.02
- [8] E.L. INCE, Ordinary Differential Equations, Dover Publications, 1926, 295-303.
- [9] K. MAHLER, On formal power series as integrals of algebraic differential equations, Lincei-Rend. Sc. Fis. Mat. e Nat., L (1971), 76-89. Zbl0223.12107MR45 #8649
- [10] E. MAILLET, Sur les séries divergentes et les équations différentiels, Ann. Sci. École Norm. Sup., (1903), 487-518. Zbl34.0282.01JFM34.0282.01
- [11] B. MALGRANGE, Sur le théorème de Maillet, Asymptotic Anal. 2 (1989), 1-4. Zbl0693.34004MR90f:32005
- [12] J.F. MATTEI et R. MOUSSU, Holonomie et intégrales premières, Ann. Scient. Éc. Norm. Sup. 4ème serie, 13 (1980), 469-523. Zbl0458.32005MR83b:58005
- [13] H. PONCARÉ, Sur les propriétés des fonctions définies par les équations aux différences partielles, Thèse, Paris, 1879.
- [14] J.P. RAMIS, Devissage Gevrey, Astérisque, 59/60 (1978), 173-204. Zbl0409.34018MR81g:34010
- [15] J.P. RAMIS, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Memoirs of the American Mathematical Society, 296 (1984), 1-95. Zbl0555.47020MR86e:34021
- [16] J.F. RITT, On the singular solutions of algebraic differential equations, Ann. of Math., 37 (1936), 552-617. Zbl0015.25505JFM62.0518.01
- [17] A. SEIDENBERG, Reduction of singularities of the differential equation Ady = Bdx, Amer. J. Math., (1968), 248-269. Zbl0159.33303MR36 #3762
- [18] R.J. WALKER, Algebraic Curves, Dover Publications, 1962, 93-96. Zbl0103.38202
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.