On curves with natural cohomology and their deficiency modules
Giorgio Bolondi; Jean-Claude Migliore
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 2, page 325-357
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBolondi, Giorgio, and Migliore, Jean-Claude. "On curves with natural cohomology and their deficiency modules." Annales de l'institut Fourier 43.2 (1993): 325-357. <http://eudml.org/doc/74998>.
@article{Bolondi1993,
abstract = {The minimal free resolution of the Hartshorne-Rao module of a curve with natural cohomology is studied, and conditions are given on the degrees and the ranks of the terms of this resolution.},
author = {Bolondi, Giorgio, Migliore, Jean-Claude},
journal = {Annales de l'institut Fourier},
keywords = {deficiency modules; liaison; resolution of the Hartshorne-Rao module; Hilbert schemes},
language = {eng},
number = {2},
pages = {325-357},
publisher = {Association des Annales de l'Institut Fourier},
title = {On curves with natural cohomology and their deficiency modules},
url = {http://eudml.org/doc/74998},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Bolondi, Giorgio
AU - Migliore, Jean-Claude
TI - On curves with natural cohomology and their deficiency modules
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 2
SP - 325
EP - 357
AB - The minimal free resolution of the Hartshorne-Rao module of a curve with natural cohomology is studied, and conditions are given on the degrees and the ranks of the terms of this resolution.
LA - eng
KW - deficiency modules; liaison; resolution of the Hartshorne-Rao module; Hilbert schemes
UR - http://eudml.org/doc/74998
ER -
References
top- [B] G. BOLONDI, Irreducible families of curves with fixed cohomology, Arch. Math., 53 (1989), 300-305. Zbl0658.14005MR91c:14034
- [BB] E. BALLICO, G. BOLONDI, The variety of module structures, Arch. Math., 54 (1990), 397-408. Zbl0715.14019MR91c:14008
- [BBM] E. BALLICO, G. BOLONDI, J.C. MIGLIORE, The Lazarsfeld-Rao problem for liaison classes of two-codimensional subschemes of Pn, Amer. Jour. of Math., 113 (1991), 117-128. Zbl0754.14032MR92c:14047
- [BM1] G. BOLONDI, J.C. MIGLIORE, Classification of maximal rank curves in the liaison class Ln, Math. Ann., 277 (1987), 585-603. Zbl0607.14015MR88i:14027
- [BM2] G. BOLONDI, J.C. MIGLIORE, Buchsbaum liaison classes, J. Algebra, 123 (1989), 426-456. Zbl0695.14022MR90g:14017
- [BM3] G. BOLONDI, J.C. MIGLIORE, The Lazarsfeld-Rao problem for Buchsbaum curves, Rend. Sem. Mat. Univ. Padova, 82 (1989), 67-97. Zbl0714.14030MR91e:14046
- [BM4] G. BOLONDI, J.C. MIGLIORE, The structure of an even liaison class, Trans. A.M.S., 316 (1989), 1-37. Zbl0689.14019MR90b:14060
- [F] G. FLOYSTAD, On space curves with good cohomological properties, Math. Ann., 291 (1991), 505-549. Zbl0724.14019MR92i:14033
- [GMa] S. GIUFFRIDA, R. MAGGIONI, On the Rao module of a curve lying on a smooth cubic surface in P3, II. Preprint Europroj N° 5. Zbl0765.14016
- [GM] A.V. GERAMITA, J.C. MIGLIORE, On the ideal of an arithmetically Bucshbaum curve, J. Pure and Appl. Algebra, 54 (1988), 215-247. Zbl0674.14036MR90d:14053
- [LR] R. LAZARSFELD, A.P. RAO, Algebraic Geometry-Open problems (Ravello 1982). Lecture Notes in Math., vol. 997, Springer-Verlag Berlin, 1983, 267-289. Zbl0532.14017
- [M] J.C. MIGLIORE, Geometric invariants for liaison of space curves, J. Algebra, 99 (1986), 548-572. Zbl0596.14020MR87g:14031
- [MP] M. MARTIN-DESCHAMPS, D. PERRIN, Sur la classification des courbes gauches, Astérisque, Soc. Math. de France, (1990), 184-185. Zbl0717.14017MR91h:14039
- [MP1] M. MARTIN-DESCHAMPS, D. PERRIN, Courbes gauches et Modules de Rao, to appear. Zbl0765.14017
- [R] A.P. RAO, Liaison among curves in P3, Inv. Math., 40 (1979), 205-217. Zbl0406.14033MR80e:14023
- [SV] J. STÜCKRAD, W. VOGEL, Buchsbaum rings and applications, Springer-Verlag Berlin, 1986. Zbl0606.13017
- [Sw] Ph. SCHWARTAU, Liaison addition and monomial ideals, Ph. D. Thesis, Brandeis University, 1982.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.