On the contraction of the discrete series of S U ( 1 , 1 )

C. Cishahayo; S. De Bièvre

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 2, page 551-567
  • ISSN: 0373-0956

Abstract

top
It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group 𝒫 1 , 1 = S O ( 1 , 1 ) s 2 can be obtained via contraction from the discrete series of representations of S U ( 1 , 1 ) .

How to cite

top

Cishahayo, C., and De Bièvre, S.. "On the contraction of the discrete series of $SU(1,1)$." Annales de l'institut Fourier 43.2 (1993): 551-567. <http://eudml.org/doc/75010>.

@article{Cishahayo1993,
abstract = {It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group $\{\cal P\}^\{1,1\} = SO(1,1) \otimes _s\{\Bbb R\}^2$ can be obtained via contraction from the discrete series of representations of $SU(1,1)$.},
author = {Cishahayo, C., De Bièvre, S.},
journal = {Annales de l'institut Fourier},
keywords = {positive energy representation; Poincaré group; contraction; discrete series of representations},
language = {eng},
number = {2},
pages = {551-567},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the contraction of the discrete series of $SU(1,1)$},
url = {http://eudml.org/doc/75010},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Cishahayo, C.
AU - De Bièvre, S.
TI - On the contraction of the discrete series of $SU(1,1)$
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 2
SP - 551
EP - 567
AB - It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group ${\cal P}^{1,1} = SO(1,1) \otimes _s{\Bbb R}^2$ can be obtained via contraction from the discrete series of representations of $SU(1,1)$.
LA - eng
KW - positive energy representation; Poincaré group; contraction; discrete series of representations
UR - http://eudml.org/doc/75010
ER -

References

top
  1. [AAG] S. T. ALI, J. P. ANTOINE, and J.P. GAZEAU, De Sitter to Poincaré contraction and relativistic coherent states, Ann. Inst. H. Poincaré, 52 (1990), 83-111. Zbl0706.22018MR91e:22027
  2. [DBE] S. De BIÈVRE and A. El GRADECHI, Quantum mechanics and coherent states on the Anti-de Sitter spacetime and their Poincaré contraction, Ann. Inst. H. Poincaré, 57 (1992), 403-428. Zbl0770.53048MR93m:81053
  3. [D] A. H. DOOLEY, Contractions of Lie groups and applications to analysis, in : Topics in modern harmonic analysis, Vol.I, 483-515 (Instituto Nazionale di Alta Matematica Francesco SEVERI, Roma 1983). Zbl0551.22006MR86e:22015
  4. [DR1] A. H. DOOLEY and J. W. RICE, Contractions of rotation groups and their representations, Math. Proc. Camb. Phil. Soc., 94 (1983), 509-517. Zbl0532.22014MR87a:22022
  5. [DR2] A. H. DOOLEY and J. W. RICE, On contractions of semisimple Lie groups, Trans. Amer. Math. Soc., 289 (1985), 185-202. Zbl0546.22017MR86g:22019
  6. [E] A. El GRADECHI, Théories classique et quantique sur l'espace-temps Anti-de Sitter et leurs limites à courbure nulle, Thèse de Doctorat, Université Paris 7, décembre 1991. 
  7. [EDB] A. El GRADECHI and S. De BIÈVRE, Phase space quantum mechanics on the Anti-de Sitter spacetime and its Poincaré contraction, preprint 1992. Zbl0810.53070
  8. [Fr] C. FRONSDAL, Elementary particles in a curved space, Rev. Mod. Phys., 37 (1965), 221-224. Zbl0125.45305MR31 #3193
  9. [GH] J. P. GAZEAU and V. HUSSIN, Poincaré Contraction of SU (1, 1) Fock-Bargmann Structure, J. of Physics A, Math. Gen., 25 (1992), 1549-1573. Zbl0824.22018MR93k:81128
  10. [Gi] R. GILMORE, Lie groups, Lie algebras and some of their Applications, Wiley, New York, 1974. Zbl0279.22001
  11. [IW] E. INÖNÜ and E. P. WIGNER, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U. S., 39 (1953), 510-524. Zbl0050.02601MR14,1061c
  12. [Ki] A. KIRILLOV, Eléments de la Théorie des Représentations, Editions Mir, Moscou, 1974. 
  13. [Ko] B. KOSTANT, Quantization and unitary representations, Lecture Notes in Math., 170, Springer Verlag, Berlin, 1970. Zbl0223.53028MR45 #3638
  14. [LM] P. LIBERMANN and C. M. MARLE, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company, 1987. Zbl0643.53002MR88c:58016
  15. [Ma] G. W. MACKEY, On the analogy between semisimple Lie groups and certain related semi-direct product groups, in : Lie Groups and Their Representations, I. M. Gelfand (Ed.), 339-364 (Akadémiai Kiadó, Budapest 1975). Zbl0324.22006MR53 #13478
  16. [MN] J. MICKELSSON and J. NIEDERLE, Contractions of representations of the Sitter groups, Commun. Math. Phys., 27 (1972), 167-180. Zbl0236.22021MR46 #8611
  17. [Pe] A. PERELOMOV, Generalized Coherent States and their Applications, Springer Verlag, Berlin, 1986. Zbl0605.22013MR87m:22035
  18. [R] P. RENOUARD, Variétés Symplectiques et Quantification, Thèse Orsay, 1969. 
  19. [Ra] J.H. RAWNSLEY, Representations of a semi-direct product by quantization, Math. Proc. Camb. Phil. Soc., 78 (1975), 345-350. Zbl0313.22014MR52 #8341
  20. [Sa] J. SALETAN, Contraction of Lie groups, J. Math. Phys., 2 (1961), 1-21. Zbl0098.25804MR23 #B259
  21. [Wo] N.M.J. WOODHOUSE, Geometric Quantization, Clarendon Press, Oxford, 1980. Zbl0458.58003MR84j:58058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.