On the contraction of the discrete series of
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 2, page 551-567
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCishahayo, C., and De Bièvre, S.. "On the contraction of the discrete series of $SU(1,1)$." Annales de l'institut Fourier 43.2 (1993): 551-567. <http://eudml.org/doc/75010>.
@article{Cishahayo1993,
abstract = {It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group $\{\cal P\}^\{1,1\} = SO(1,1) \otimes _s\{\Bbb R\}^2$ can be obtained via contraction from the discrete series of representations of $SU(1,1)$.},
author = {Cishahayo, C., De Bièvre, S.},
journal = {Annales de l'institut Fourier},
keywords = {positive energy representation; Poincaré group; contraction; discrete series of representations},
language = {eng},
number = {2},
pages = {551-567},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the contraction of the discrete series of $SU(1,1)$},
url = {http://eudml.org/doc/75010},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Cishahayo, C.
AU - De Bièvre, S.
TI - On the contraction of the discrete series of $SU(1,1)$
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 2
SP - 551
EP - 567
AB - It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group ${\cal P}^{1,1} = SO(1,1) \otimes _s{\Bbb R}^2$ can be obtained via contraction from the discrete series of representations of $SU(1,1)$.
LA - eng
KW - positive energy representation; Poincaré group; contraction; discrete series of representations
UR - http://eudml.org/doc/75010
ER -
References
top- [AAG] S. T. ALI, J. P. ANTOINE, and J.P. GAZEAU, De Sitter to Poincaré contraction and relativistic coherent states, Ann. Inst. H. Poincaré, 52 (1990), 83-111. Zbl0706.22018MR91e:22027
- [DBE] S. De BIÈVRE and A. El GRADECHI, Quantum mechanics and coherent states on the Anti-de Sitter spacetime and their Poincaré contraction, Ann. Inst. H. Poincaré, 57 (1992), 403-428. Zbl0770.53048MR93m:81053
- [D] A. H. DOOLEY, Contractions of Lie groups and applications to analysis, in : Topics in modern harmonic analysis, Vol.I, 483-515 (Instituto Nazionale di Alta Matematica Francesco SEVERI, Roma 1983). Zbl0551.22006MR86e:22015
- [DR1] A. H. DOOLEY and J. W. RICE, Contractions of rotation groups and their representations, Math. Proc. Camb. Phil. Soc., 94 (1983), 509-517. Zbl0532.22014MR87a:22022
- [DR2] A. H. DOOLEY and J. W. RICE, On contractions of semisimple Lie groups, Trans. Amer. Math. Soc., 289 (1985), 185-202. Zbl0546.22017MR86g:22019
- [E] A. El GRADECHI, Théories classique et quantique sur l'espace-temps Anti-de Sitter et leurs limites à courbure nulle, Thèse de Doctorat, Université Paris 7, décembre 1991.
- [EDB] A. El GRADECHI and S. De BIÈVRE, Phase space quantum mechanics on the Anti-de Sitter spacetime and its Poincaré contraction, preprint 1992. Zbl0810.53070
- [Fr] C. FRONSDAL, Elementary particles in a curved space, Rev. Mod. Phys., 37 (1965), 221-224. Zbl0125.45305MR31 #3193
- [GH] J. P. GAZEAU and V. HUSSIN, Poincaré Contraction of SU (1, 1) Fock-Bargmann Structure, J. of Physics A, Math. Gen., 25 (1992), 1549-1573. Zbl0824.22018MR93k:81128
- [Gi] R. GILMORE, Lie groups, Lie algebras and some of their Applications, Wiley, New York, 1974. Zbl0279.22001
- [IW] E. INÖNÜ and E. P. WIGNER, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U. S., 39 (1953), 510-524. Zbl0050.02601MR14,1061c
- [Ki] A. KIRILLOV, Eléments de la Théorie des Représentations, Editions Mir, Moscou, 1974.
- [Ko] B. KOSTANT, Quantization and unitary representations, Lecture Notes in Math., 170, Springer Verlag, Berlin, 1970. Zbl0223.53028MR45 #3638
- [LM] P. LIBERMANN and C. M. MARLE, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company, 1987. Zbl0643.53002MR88c:58016
- [Ma] G. W. MACKEY, On the analogy between semisimple Lie groups and certain related semi-direct product groups, in : Lie Groups and Their Representations, I. M. Gelfand (Ed.), 339-364 (Akadémiai Kiadó, Budapest 1975). Zbl0324.22006MR53 #13478
- [MN] J. MICKELSSON and J. NIEDERLE, Contractions of representations of the Sitter groups, Commun. Math. Phys., 27 (1972), 167-180. Zbl0236.22021MR46 #8611
- [Pe] A. PERELOMOV, Generalized Coherent States and their Applications, Springer Verlag, Berlin, 1986. Zbl0605.22013MR87m:22035
- [R] P. RENOUARD, Variétés Symplectiques et Quantification, Thèse Orsay, 1969.
- [Ra] J.H. RAWNSLEY, Representations of a semi-direct product by quantization, Math. Proc. Camb. Phil. Soc., 78 (1975), 345-350. Zbl0313.22014MR52 #8341
- [Sa] J. SALETAN, Contraction of Lie groups, J. Math. Phys., 2 (1961), 1-21. Zbl0098.25804MR23 #B259
- [Wo] N.M.J. WOODHOUSE, Geometric Quantization, Clarendon Press, Oxford, 1980. Zbl0458.58003MR84j:58058
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.