Quantum mechanics and coherent states on the anti-de Sitter spacetime and their Poincaré contraction

Stephan De Bièvre; Amine M. El Gradechi

Annales de l'I.H.P. Physique théorique (1992)

  • Volume: 57, Issue: 4, page 403-428
  • ISSN: 0246-0211

How to cite

top

De Bièvre, Stephan, and El Gradechi, Amine M.. "Quantum mechanics and coherent states on the anti-de Sitter spacetime and their Poincaré contraction." Annales de l'I.H.P. Physique théorique 57.4 (1992): 403-428. <http://eudml.org/doc/76594>.

@article{DeBièvre1992,
author = {De Bièvre, Stephan, El Gradechi, Amine M.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {zero curvature limit; Poincaré polarization},
language = {eng},
number = {4},
pages = {403-428},
publisher = {Gauthier-Villars},
title = {Quantum mechanics and coherent states on the anti-de Sitter spacetime and their Poincaré contraction},
url = {http://eudml.org/doc/76594},
volume = {57},
year = {1992},
}

TY - JOUR
AU - De Bièvre, Stephan
AU - El Gradechi, Amine M.
TI - Quantum mechanics and coherent states on the anti-de Sitter spacetime and their Poincaré contraction
JO - Annales de l'I.H.P. Physique théorique
PY - 1992
PB - Gauthier-Villars
VL - 57
IS - 4
SP - 403
EP - 428
LA - eng
KW - zero curvature limit; Poincaré polarization
UR - http://eudml.org/doc/76594
ER -

References

top
  1. [AAG] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, De Sitter to Poincaré Contraction and Relativistic Coherent States, Ann. Inst. Henri Poincaré, Vol. 52, 1, 1990, pp. 83-111. Zbl0706.22018MR1046086
  2. [AM] R. Abraham and J. Marsden, Foundations of mechanics, 2nd Ed., Benjamin/ Cummings, Mass., 1978. Zbl0393.70001MR515141
  3. [BEGG] R. Balbinot, M.A. El Gradechi, J.-P. Gazeau and B. Giorgini, Phase spaces for quantum elementary systems in de Sitter and Minkowski spacetimes, Preprint L.P. T.M., 1990. 
  4. [BLL] H. Bacry and J.M. Lévy-Leblond, Possible kinematics, J.M.P., Vol. 9, 1968, pp. 1605-1614. Zbl0162.58606MR238545
  5. [CDB] C. Cishahayo and S. De Bièvre, On the contraction of the discrete series of SU(1, 1), Ann. Inst. Fourier (to appear). Zbl0793.22005
  6. [D] A.H. Dooley, Contractions of Lie groups and applications to analysis; in Topics in modern harmonic analysis, Proceedings of a seminar held in Torino and Milano, May-June 1982, Vol. I, pp.483-515, Instituto Nazionale di Alta Matematica Francesco Severi, Roma, 1983. Zbl0551.22006MR748872
  7. [DB] S. De Bièvre, Scattering in relativistic particle mechanics, Ph. D. Thesis, Dept. of Physics, University of Rochester, 1986. 
  8. [EDB] M.A. El Gradechi and S. De Bièvre, Phase space quantum mechanics on the Anti-de Sitter spacetime, and its Poincaré contraction, preprint CRM-1838, hepth- 9210133, 1992. 
  9. [DBEG] S. De Bièvre, M.A. El Gradechi and J.-P. Gazeau, Phase space description of a quantum elementary system on the anti-de Sitter spacetime and its contraction, Proceedings of the 18th International Colloquium on Group Theoretical Methods in Physics, Moscow 4-9 June 1990 (to appear). 
  10. [F] C. Fronsdal, Elementary particles in a curved space I, II, III and IV, Rev. Mod. Phys., 37, 1965, pp.221-224; Phys. Rev. D., Vol. 10, 1974, pp. 589-598; Phys. Rev. D, Vol. 12, 1975, pp. 3810-3818; Phys. Rev. D, Vol. 12, 1975, pp. 3819-3830. Zbl0125.45305MR178939
  11. [FF] M. Flato and C. Fronsdal, Three-dimensional Singletons, Lett. Math. Phys., Vol. 20, 1990, pp.65-74. Zbl0697.53083MR1058996
  12. [GH] J.-P. Gazeau and M. Hans, Integral spin fields on (3 + 2)-de Sitter space, J.M.P., Vol. 29, 1988, pp. 2533-2552. Zbl0783.53048MR969703
  13. [IW] E. Inönu and E.P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U.S.A., Vol. 39, 1953, pp. 510-524. Zbl0050.02601MR55352
  14. [LN] M. Lévy-Nahas, Deformation and contraction of Lie algebras, J.M.P., Vol. 8, 1967, pp. 1211-1222. Zbl0175.24803MR224747
  15. [MN] J. Mickelsson and J. Niederle, Contractions of representations of de Sitter groups, C.M.P., Vol. 27, 1972, pp. 167-180. Zbl0236.22021MR309502
  16. [Pe] A. Perelomov, Generalized coherent states and their applications, Springer Verlag, Berlin, 1986. Zbl0605.22013MR899736
  17. [R] J.H. Rawnsley, De Sitter symplectic spaces and their quantizations, Proc. Camb. Phil. Soc., Vol. 76, 1974, pp. 473-480. Zbl0286.22017MR353853
  18. [S] E.J. Saletan, Contraction of Lie groups, J.M.P., Vol. 2, 1961, pp. 1-21. Zbl0098.25804MR127213
  19. [Sn] J. Sniatycki, Dirac brackets in geometric dynamics, Ann. Inst. H. Poincaré, Vol. 20, 1974, pp. 365-372. Zbl0295.70010MR358860
  20. [So] J.M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970. Zbl0186.58001MR260238
  21. [W] N. Woodhouse, Geometric quantization, Clarendon Press, Oxford, 1980. Zbl0458.58003MR605306

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.