Analytic potential theory over the -adics
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 4, page 905-944
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. BERG, G. FORST, Potential theory on locally compact abelian groups, Ergebn. d. Math., 87, Springer-Verlag (1975). Zbl0308.31001MR58 #1204
- [2] J. BLIEDTNER, W. HANSEN, Potential theory, Universitext, Springer-Verlag (1986). Zbl0706.31001
- [3] J.W.S. CASSELS, A. FRÖHLICH, Algebraic number theory, Thompson, 1967. Zbl0153.07403
- [4] W. FELLER, An introduction to probability theory and its applications, Vol. II, John Wiley & Sons, 1970.
- [5] S. HARAN, Riesz potentials and explicit sums in arithmetic, Inventiones Math., 101 (1990), 697-703. Zbl0788.11055MR91g:11132
- [6] S. HARAN, Index theory, potential theory and the Riemann hypothesis, in Proc. LMS Symp. on L-functions and Arithmetic, Durham, 1989. Zbl0744.11042
- [7] G.A. HUNT, Markoff processes and potentials I-III, Illinois J. Math., 1 (1957), 44-93 and 316-369 ; 2 (1958), 151-213. Zbl0100.13804
- [8] N.S. LANDKOF, Foundations of modern potential theory, Grundl. d. math. Wiss., 180, Springer-Verlag (1972). Zbl0253.31001MR50 #2520
- [9] S.C. PORT, C.J. STONE, Infinitely divisible processes and their potential theory I-II, Ann. Inst. Fourier, 21-2 (1971), 157-275 ; 21-4 (1971), 179-265. Zbl0195.47601MR49 #11640
- [10] M. TAIBLESON, Fourier analysis over local fields, Princeton Univ. Press, 1975. Zbl0319.42011MR58 #6943
- [11] A. WEIL, Fonction zêta et distributions, séminaire Bourbaki (1966), 312. Zbl0226.12008