Quantizations and symbolic calculus over the p -adic numbers

Shai Haran

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 4, page 997-1053
  • ISSN: 0373-0956

Abstract

top
We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the p -adic numbers. We apply this theory to the study of elliptic operators over the p -adic numbers and determine their asymptotic spectral behavior.

How to cite

top

Haran, Shai. "Quantizations and symbolic calculus over the $p$-adic numbers." Annales de l'institut Fourier 43.4 (1993): 997-1053. <http://eudml.org/doc/75032>.

@article{Haran1993,
abstract = {We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the $p$-adic numbers. We apply this theory to the study of elliptic operators over the $p$-adic numbers and determine their asymptotic spectral behavior.},
author = {Haran, Shai},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {997-1053},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quantizations and symbolic calculus over the $p$-adic numbers},
url = {http://eudml.org/doc/75032},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Haran, Shai
TI - Quantizations and symbolic calculus over the $p$-adic numbers
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 4
SP - 997
EP - 1053
AB - We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the $p$-adic numbers. We apply this theory to the study of elliptic operators over the $p$-adic numbers and determine their asymptotic spectral behavior.
LA - eng
UR - http://eudml.org/doc/75032
ER -

References

top
  1. [1] V. BARGMANN, On a Hilbert Space of Analytic Functions and an Associated Integral Transform, Comm. Pure Appl. Math., 14 (1961), 187-214. Zbl0107.09102MR28 #486
  2. [2] R. BEALS, A General Calculus of Pseudodifferential Operators, Duke Math. J., 42 (1975), 1-42. Zbl0343.35078MR51 #3972
  3. [3] J. BERGH, J. LÓFSTRÖM, Interpolation Spaces, Berlin-Heidelberg-New York, Springer, 1976. Zbl0344.46071
  4. [4] F.A. BEREZIN, Wick and anti-Wick Operator Symbols, Math. USSR Sb., 15 (1971), 577-606. Zbl0247.47018
  5. [5] A. CALDERÓN, R. VAILLANCOURT, On the Boudedness of Pseudodifferential Operators, J. Math. Soc. Japan, 23 (1971), 374-378. Zbl0203.45903MR44 #2096
  6. [6] P. CARTIER, Quantum Mechanical Commutation Relations and Theta Functions, Proc. Symp. Pure Math., 9, AMS, Providence, 1966, 361-383. Zbl0178.28401MR35 #7654
  7. [7] A. CÓRDOBA, C. FEFFERMAN, Wave Packets and Fourier Integral Operators, Comm. Partial Diff. Eq., 3 (1978), 979-1005. Zbl0389.35046MR80a:35117
  8. [8] C. FEFFERMAN, D.H. PHONG, The Uncertainty Principle and Sharp Gårding Inequalities, Comm. Pure. Appl. Math., 34 (1981), 285-331. Zbl0458.35099MR82j:35140
  9. [9] G.B. FOLLAND, Harmonic Analysis in Phase Space, New Jersey, Princeton University Press, 1989. Zbl0682.43001MR92k:22017
  10. [10] L. GÅRDING, On the Asymptotic of the Eigenvalues and Eigenfunctions of Elliptic Differential Operators, Math. Scand., 1 (1953), 237-255. Zbl0053.39102MR16,366b
  11. [11] S. GELBART, Weil's Representation and the Spectrum of the Metaplectic Group, Lectures Notes in Math. Springer 530, Berlin-Heidelberg-New York, 1976. Zbl0365.22017MR54 #12654
  12. [12] A. GROSSMAN, G. LOUPIAS, E.M. STEIN, An Algebra of Pseudodifferential Operators and Quantum Mechanics in Phase Space, Ann. Inst. Fourier (Grenoble), 18-2 (1968), 343-368. Zbl0176.45102MR42 #2327
  13. [13] V. GUILLEMIN, S. STERNBERG, The Metaplectic Representation, Weyl Operators, and Spectral Theory, J. Funct. Anal., 42 (1981), 128-225. Zbl0469.58017MR83i:58101
  14. [14] S. HARAN, Riesz Potentials and Explicit Sums in Arithmetic, Invent. Math., 101 (1990), 697-703. Zbl0788.11055MR91g:11132
  15. [15] S. HARAN, Index Theory, Potential Theory, and the Riemann Hypothesis Proc. Durham Symp. on L-functions and Arithmetic, Cambridge Univ. Press, 1991. 
  16. [16] S. HARAN, Analytic Potential Theory over the p-adics, Ann. Inst. Fourier (Grenoble), 43-4 (1993). Zbl0847.31006MR95c:11141
  17. [17] B. HELFFER, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, 112 (1984). Zbl0541.35002MR86d:35151
  18. [18] L. HÖRMANDER, The Weyl Calculus of Pseudodifferential Operators, Comm. Pure Appl. Math., 32 (1979), 359-443. Zbl0388.47032MR80j:47060
  19. [19] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, III, Springer, Berlin-Heidelberg-New-York Tokyo, 1985. Zbl0601.35001
  20. [20] L. HÖRMANDER, On the Asymptotic Distribution of Eigenvalues of Pseudodifferential Operators in ℝn, Arkiv for Math., 17 (2) (1979), 296-313. Zbl0436.35064
  21. [21] R. HOWE, Quantum Mechanics and Partial Differential Equations, J. Funct. Anal., 38 (1980), 188-254. Zbl0449.35002MR83b:35166
  22. [22] R. HOWE, Theta Series and Invariant Theory, Proc. Symp. Pure Math. 33, AMS Providence 1979, part. 1, 275-285. Zbl0423.22016MR81f:22034
  23. [23] R. HOWE, On the Role of the Heisenberg Group in Harmonic Analysis, Bull. AMS, 3 (1980), 821-843. Zbl0442.43002MR81h:22010
  24. [24] A.W. KNAPP, E.M. STEIN, Intertwining Operators for Semisimple Groups, Ann. of Math., 93 (1971), 489-578. Zbl0257.22015MR57 #536
  25. [25] J. PEETRE, New Thoughts on Besov Spaces, Duke Univ. Math. Series, 1976. Zbl0356.46038MR57 #1108
  26. [26] J. PEETRE, The Weyl Transform and Laguerre Polynomials, Le Mathematiche (Catania), 27 (1972), 301-323. Zbl0276.44005MR49 #5426
  27. [27] D. ROBERT, Propriétés spectrales d'opérateurs pseudodifférentiels, Comm. Partial Diff. Eq., 3 (1978), 755-826. Zbl0392.35056MR80b:35112
  28. [28] R.T. SEELEY, The Complex Powers of an Elliptic Operator, Proc. Symp. Pure Math. 10, AMS, Providence, 1967, 308-315. Zbl0159.15504
  29. [29] J.-P. SERRE, Local Fields, Springer, Berlin-Heidelberg-New York, 1979. 
  30. [30] M.A. SUBIN, Pseudodifferential Operators and Spectral Theory, Nauka, Moscow, 1978. Zbl0451.47064
  31. [31] M.H. TAIBLESON, Fourier Analysis on Local Fields, Princeton Univ. Press, 1975. Zbl0319.42011MR58 #6943
  32. [32] M.E. TAYLOR, Noncommutative Harmonic Analysis, AMS Providence, 1986. Zbl0604.43001MR88a:22021
  33. [33] F. TREVES, Topological Vector Spaces, Distribution, and Kernels, Academic Press, New York, 1967. Zbl0171.10402MR37 #726
  34. [34] H. TRIEBEL, Theory of Functions Spaces, Monogr. in Math. 78, Basel-Boston-Stuttgart, Birkhäuser, 1983. Zbl0546.46027MR86j:46026
  35. [35] A. VOROS, An Algebra of Pseudodifferential Operators and the Asymptotics of Quantum Mechanics, J. Funct. Anal., 29 (1978), 104-132. Zbl0386.47031MR58 #14697
  36. [36] A. WEIL, Sur certains groupes d'opérateurs unitaires, Acta. Math., 111 (1964), 143-211; also in Weil's Œuvres Scientifiques, vol. III, 1-69, Springer, Berlin-Heidelberg-New York, 1980. Zbl0203.03305MR29 #2324
  37. [37] H. WEYL, The Theory of Groups and Quantum Mechanics, New York, Dover, 1950. Zbl0041.56804
  38. [38] R. HOWE, The Oscillator Semigroup, Proc. Symp. Pure Math., 48 (1988), 61-132. Zbl0687.47034MR90f:22014
  39. [39] A. UNTERBERGER, J. UNTERBERGER, La serie discrète de SL(2,ℝ) et les opérateurs pseudo-différentiels sur une demi-droite, Ann. Scient. Écol. Norm. Sup., 17 (1984), 83-116. Zbl0549.35119MR86c:22026
  40. [40] A. UNTERBERGER, J. UNTERBERGER, Quantification et analyse pseudodifférentielle, Ann. Scient. Écol. Norm. Sup., 21 (1988), 133-158. Zbl0646.58025MR89h:58187
  41. [41] A. UNTERBERGER, J. UNTERBERGER, Série principale et quantification, C.R. Acad. Sci. Paris, 312, Série 1 (1991), 729-734. Zbl0739.22014MR92c:22028
  42. [42] V.S. VLADIMIROV, I.V. VOLOVICH, p-adic Quantum Mechanics, Comm. Math. Phys., 123 (1989), 659-676. Zbl0688.22004MR90h:81049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.