Quantizations and symbolic calculus over the -adic numbers
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 4, page 997-1053
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHaran, Shai. "Quantizations and symbolic calculus over the $p$-adic numbers." Annales de l'institut Fourier 43.4 (1993): 997-1053. <http://eudml.org/doc/75032>.
@article{Haran1993,
abstract = {We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the $p$-adic numbers. We apply this theory to the study of elliptic operators over the $p$-adic numbers and determine their asymptotic spectral behavior.},
author = {Haran, Shai},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {997-1053},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quantizations and symbolic calculus over the $p$-adic numbers},
url = {http://eudml.org/doc/75032},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Haran, Shai
TI - Quantizations and symbolic calculus over the $p$-adic numbers
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 4
SP - 997
EP - 1053
AB - We develop the basic theory of the Weyl symbolic calculus of pseudodifferential operators over the $p$-adic numbers. We apply this theory to the study of elliptic operators over the $p$-adic numbers and determine their asymptotic spectral behavior.
LA - eng
UR - http://eudml.org/doc/75032
ER -
References
top- [1] V. BARGMANN, On a Hilbert Space of Analytic Functions and an Associated Integral Transform, Comm. Pure Appl. Math., 14 (1961), 187-214. Zbl0107.09102MR28 #486
- [2] R. BEALS, A General Calculus of Pseudodifferential Operators, Duke Math. J., 42 (1975), 1-42. Zbl0343.35078MR51 #3972
- [3] J. BERGH, J. LÓFSTRÖM, Interpolation Spaces, Berlin-Heidelberg-New York, Springer, 1976. Zbl0344.46071
- [4] F.A. BEREZIN, Wick and anti-Wick Operator Symbols, Math. USSR Sb., 15 (1971), 577-606. Zbl0247.47018
- [5] A. CALDERÓN, R. VAILLANCOURT, On the Boudedness of Pseudodifferential Operators, J. Math. Soc. Japan, 23 (1971), 374-378. Zbl0203.45903MR44 #2096
- [6] P. CARTIER, Quantum Mechanical Commutation Relations and Theta Functions, Proc. Symp. Pure Math., 9, AMS, Providence, 1966, 361-383. Zbl0178.28401MR35 #7654
- [7] A. CÓRDOBA, C. FEFFERMAN, Wave Packets and Fourier Integral Operators, Comm. Partial Diff. Eq., 3 (1978), 979-1005. Zbl0389.35046MR80a:35117
- [8] C. FEFFERMAN, D.H. PHONG, The Uncertainty Principle and Sharp Gårding Inequalities, Comm. Pure. Appl. Math., 34 (1981), 285-331. Zbl0458.35099MR82j:35140
- [9] G.B. FOLLAND, Harmonic Analysis in Phase Space, New Jersey, Princeton University Press, 1989. Zbl0682.43001MR92k:22017
- [10] L. GÅRDING, On the Asymptotic of the Eigenvalues and Eigenfunctions of Elliptic Differential Operators, Math. Scand., 1 (1953), 237-255. Zbl0053.39102MR16,366b
- [11] S. GELBART, Weil's Representation and the Spectrum of the Metaplectic Group, Lectures Notes in Math. Springer 530, Berlin-Heidelberg-New York, 1976. Zbl0365.22017MR54 #12654
- [12] A. GROSSMAN, G. LOUPIAS, E.M. STEIN, An Algebra of Pseudodifferential Operators and Quantum Mechanics in Phase Space, Ann. Inst. Fourier (Grenoble), 18-2 (1968), 343-368. Zbl0176.45102MR42 #2327
- [13] V. GUILLEMIN, S. STERNBERG, The Metaplectic Representation, Weyl Operators, and Spectral Theory, J. Funct. Anal., 42 (1981), 128-225. Zbl0469.58017MR83i:58101
- [14] S. HARAN, Riesz Potentials and Explicit Sums in Arithmetic, Invent. Math., 101 (1990), 697-703. Zbl0788.11055MR91g:11132
- [15] S. HARAN, Index Theory, Potential Theory, and the Riemann Hypothesis Proc. Durham Symp. on L-functions and Arithmetic, Cambridge Univ. Press, 1991.
- [16] S. HARAN, Analytic Potential Theory over the p-adics, Ann. Inst. Fourier (Grenoble), 43-4 (1993). Zbl0847.31006MR95c:11141
- [17] B. HELFFER, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, 112 (1984). Zbl0541.35002MR86d:35151
- [18] L. HÖRMANDER, The Weyl Calculus of Pseudodifferential Operators, Comm. Pure Appl. Math., 32 (1979), 359-443. Zbl0388.47032MR80j:47060
- [19] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, III, Springer, Berlin-Heidelberg-New-York Tokyo, 1985. Zbl0601.35001
- [20] L. HÖRMANDER, On the Asymptotic Distribution of Eigenvalues of Pseudodifferential Operators in ℝn, Arkiv for Math., 17 (2) (1979), 296-313. Zbl0436.35064
- [21] R. HOWE, Quantum Mechanics and Partial Differential Equations, J. Funct. Anal., 38 (1980), 188-254. Zbl0449.35002MR83b:35166
- [22] R. HOWE, Theta Series and Invariant Theory, Proc. Symp. Pure Math. 33, AMS Providence 1979, part. 1, 275-285. Zbl0423.22016MR81f:22034
- [23] R. HOWE, On the Role of the Heisenberg Group in Harmonic Analysis, Bull. AMS, 3 (1980), 821-843. Zbl0442.43002MR81h:22010
- [24] A.W. KNAPP, E.M. STEIN, Intertwining Operators for Semisimple Groups, Ann. of Math., 93 (1971), 489-578. Zbl0257.22015MR57 #536
- [25] J. PEETRE, New Thoughts on Besov Spaces, Duke Univ. Math. Series, 1976. Zbl0356.46038MR57 #1108
- [26] J. PEETRE, The Weyl Transform and Laguerre Polynomials, Le Mathematiche (Catania), 27 (1972), 301-323. Zbl0276.44005MR49 #5426
- [27] D. ROBERT, Propriétés spectrales d'opérateurs pseudodifférentiels, Comm. Partial Diff. Eq., 3 (1978), 755-826. Zbl0392.35056MR80b:35112
- [28] R.T. SEELEY, The Complex Powers of an Elliptic Operator, Proc. Symp. Pure Math. 10, AMS, Providence, 1967, 308-315. Zbl0159.15504
- [29] J.-P. SERRE, Local Fields, Springer, Berlin-Heidelberg-New York, 1979.
- [30] M.A. SUBIN, Pseudodifferential Operators and Spectral Theory, Nauka, Moscow, 1978. Zbl0451.47064
- [31] M.H. TAIBLESON, Fourier Analysis on Local Fields, Princeton Univ. Press, 1975. Zbl0319.42011MR58 #6943
- [32] M.E. TAYLOR, Noncommutative Harmonic Analysis, AMS Providence, 1986. Zbl0604.43001MR88a:22021
- [33] F. TREVES, Topological Vector Spaces, Distribution, and Kernels, Academic Press, New York, 1967. Zbl0171.10402MR37 #726
- [34] H. TRIEBEL, Theory of Functions Spaces, Monogr. in Math. 78, Basel-Boston-Stuttgart, Birkhäuser, 1983. Zbl0546.46027MR86j:46026
- [35] A. VOROS, An Algebra of Pseudodifferential Operators and the Asymptotics of Quantum Mechanics, J. Funct. Anal., 29 (1978), 104-132. Zbl0386.47031MR58 #14697
- [36] A. WEIL, Sur certains groupes d'opérateurs unitaires, Acta. Math., 111 (1964), 143-211; also in Weil's uvres Scientifiques, vol. III, 1-69, Springer, Berlin-Heidelberg-New York, 1980. Zbl0203.03305MR29 #2324
- [37] H. WEYL, The Theory of Groups and Quantum Mechanics, New York, Dover, 1950. Zbl0041.56804
- [38] R. HOWE, The Oscillator Semigroup, Proc. Symp. Pure Math., 48 (1988), 61-132. Zbl0687.47034MR90f:22014
- [39] A. UNTERBERGER, J. UNTERBERGER, La serie discrète de SL(2,ℝ) et les opérateurs pseudo-différentiels sur une demi-droite, Ann. Scient. Écol. Norm. Sup., 17 (1984), 83-116. Zbl0549.35119MR86c:22026
- [40] A. UNTERBERGER, J. UNTERBERGER, Quantification et analyse pseudodifférentielle, Ann. Scient. Écol. Norm. Sup., 21 (1988), 133-158. Zbl0646.58025MR89h:58187
- [41] A. UNTERBERGER, J. UNTERBERGER, Série principale et quantification, C.R. Acad. Sci. Paris, 312, Série 1 (1991), 729-734. Zbl0739.22014MR92c:22028
- [42] V.S. VLADIMIROV, I.V. VOLOVICH, p-adic Quantum Mechanics, Comm. Math. Phys., 123 (1989), 659-676. Zbl0688.22004MR90h:81049
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.