Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann -function
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 1, page 143-159
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNikolski, Nikolai. "Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann $\zeta $-function." Annales de l'institut Fourier 45.1 (1995): 143-159. <http://eudml.org/doc/75111>.
@article{Nikolski1995,
abstract = {It is proved that a subspace of a holomorphic Hilbert space is completely determined by their distances to the reproducing kernels. A simple rule is established to localize common zeros of a subspace of the Hardy space of the unit disc. As an illustration we show a series of discs of the complex plan free of zeros of the Riemann $\zeta $-function.},
author = {Nikolski, Nikolai},
journal = {Annales de l'institut Fourier},
keywords = {invariant subspaces; distance formulae; reproducing kernels; Riemann -function},
language = {eng},
number = {1},
pages = {143-159},
publisher = {Association des Annales de l'Institut Fourier},
title = {Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann $\zeta $-function},
url = {http://eudml.org/doc/75111},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Nikolski, Nikolai
TI - Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann $\zeta $-function
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 1
SP - 143
EP - 159
AB - It is proved that a subspace of a holomorphic Hilbert space is completely determined by their distances to the reproducing kernels. A simple rule is established to localize common zeros of a subspace of the Hardy space of the unit disc. As an illustration we show a series of discs of the complex plan free of zeros of the Riemann $\zeta $-function.
LA - eng
KW - invariant subspaces; distance formulae; reproducing kernels; Riemann -function
UR - http://eudml.org/doc/75111
ER -
References
top- [B] A. BEURLING, A closure problem related to the Riemann zeta-function, Proc. Nat. Acad. USA, 41, n° 5 (1995), 312-314. Zbl0065.30303MR17,15a
- [DSS] P. DUREN, H. SHAPIRO and A. SHIELDS, Singular measures and domains not of Smirnov type, Duke Math. Journal, 33 (1966), 247-254. Zbl0174.37501MR33 #7506
- [H] H. HEDENMALM, A factorization theorem for square area-integrable analytic functions, J. reine angew. Math., 422 (1991), 45-68. Zbl0734.30040MR93c:30053
- [He] H. HEDENMALM, An invariant subspace of the Bergman space having the codimension two property, J. reine angew. Math., 443 (1993), 1-9. Zbl0783.30040
- [Ho] K. HOFFMAN, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, NJ, 1962. Zbl0117.34001MR24 #A2844
- [K] B. KORENBLUM, Closed ideals of the ring An, Functional Analysis and its applications, 6, n° (1972), 38-52. Zbl0262.46053MR48 #2776
- [Ko] B. KORENBLUM, A Beurling type theorem, Acta Math., 138 (1977), 265-293. Zbl0354.30024MR56 #5894
- [KR] T.L. KRIETE and M. ROSENBLUM, A Phragmén-Lindelöf theorem with applications to M(u, v) functions, Pacific J. Math., 43 (1972), 175-188. Zbl0251.30019MR47 #3670
- [N] N.K. NIKOLSKI, Treatise on the shift operator, Springer-Verlag, Heidelberg, 1986.
- [Ni] N.K. NIKOLSKI, Invitation aux techniques des espaces de Hardy, EDM, Université Bordeaux-1, 1992, p. 1-69.
- [Nik] N.K. NIKOLSKI, Two problems on spectral synthesis, Lect. Notes Math., Springer-Verlag, 1043 (1984), 378-381.
- [Ny] B. NYMAN, On some groups and semi-groups of translations, Thesis, Uppsala, 1950.
- [Sh] N. SHIROKOV, Analytic functions smooth up to the boundary, Lect. Notes Math., v. 1312, Springer-Verlag, 1988. Zbl0656.30029MR90h:30087
- [V] V.I. VASYUNIN, On a biorthogonal function system related to the Riemann hypothesis, Algebra i Analiz (St. Petersburg Math. J.), to appear. Zbl0851.11051
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.