The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol

Rüdiger W. Braun

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 1, page 223-249
  • ISSN: 0373-0956

Abstract

top
Hörmander has characterized the surjective constant coefficient partial differential operators on the space of all real analytic functions on N by a Phragmén-Lindelöf condition. Geometric implications of this condition and, for homogeneous operators, of the corresponding condition for Gevrey classes are given.

How to cite

top

Braun, Rüdiger W.. "The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol." Annales de l'institut Fourier 45.1 (1995): 223-249. <http://eudml.org/doc/75115>.

@article{Braun1995,
abstract = {Hörmander has characterized the surjective constant coefficient partial differential operators on the space of all real analytic functions on $\{\Bbb R\}^N$ by a Phragmén-Lindelöf condition. Geometric implications of this condition and, for homogeneous operators, of the corresponding condition for Gevrey classes are given.},
author = {Braun, Rüdiger W.},
journal = {Annales de l'institut Fourier},
keywords = {partial differential operator; singularities; Phragmén-Lindelöf condition},
language = {eng},
number = {1},
pages = {223-249},
publisher = {Association des Annales de l'Institut Fourier},
title = {The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol},
url = {http://eudml.org/doc/75115},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Braun, Rüdiger W.
TI - The surjectivity of a constant coefficient homogeneous differential operator in the real analytic functions and the geometry of its symbol
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 1
SP - 223
EP - 249
AB - Hörmander has characterized the surjective constant coefficient partial differential operators on the space of all real analytic functions on ${\Bbb R}^N$ by a Phragmén-Lindelöf condition. Geometric implications of this condition and, for homogeneous operators, of the corresponding condition for Gevrey classes are given.
LA - eng
KW - partial differential operator; singularities; Phragmén-Lindelöf condition
UR - http://eudml.org/doc/75115
ER -

References

top
  1. [1] K.G. ANDERSSON, Propagation of analyticity of solutions of partial differential equations with constant coefficients, Ark. Mat., 8 (1971), 277-302. Zbl0211.40502MR45 #8986
  2. [2] J. BOCHNAK, M. COSTE, M.-F. ROY, Géométrie algébrique réelle, Ergebnisse Math. Grenzgebiete 3. Folge 12, Springer, Berlin 1987. Zbl0633.14016MR90b:14030
  3. [3] R.W. BRAUN, Hörmander's Phragmén-Lindelöf principle and irreducible singularities of codimension 1, Boll. Un. Mat. Ital., (7), 6-A (1992), 339-348. Zbl0777.35020MR94b:35012
  4. [4] R.W. BRAUN, Surjektivität partieller Differentialoperatoren auf Roumieu-Klassen, Habilitationsschrift, Düsseldorf, 1993. 
  5. [5] R.W. BRAUN, R. MEISE, B. A. TAYLOR, Ultradifferentiable functions and Fourier analysis, Result. Math., 17 (1990), 206-237. Zbl0735.46022MR91h:46072
  6. [6] R.W. BRAUN, R. MEISE, D. VOGT, Applications of the projective limit functor to convolution and partial differential equations, in Advances in the Theory of Fréchet-Spaces, T. Terzioǧlu (Ed.), Istanbul 1987, NATO ASI Series C, Vol. 287, Kluwer, Dordrecht 1989, 29-46. Zbl0726.46022MR92b:46119
  7. [7] R. W. BRAUN, R. MEISE, D. VOGT, Characterization of the linear partial differential operators with constant coefficients which are surjective on non-quasianalytic classes of Roumieu type on ℝN, Math. Nachrichten, 168 (1994), 19-54. Zbl0848.35023MR95g:35004
  8. [8] L. CATTABRIGA, Solutions in Gevrey spaces of partial differential equations with constant coefficients, in Analytic Solutions of Partial Differential Equations, L. Cattabriga (Ed.), Trento 1981, Astérisque, 89/90 (1981), 129-151. Zbl0496.35018MR84h:35030
  9. [9] L. CATTABRIGA, On the surjectivity of differential polynomials on Gevrey spaces, in Atti del Convegno : “Linear Partial and Pseudodifferential Operators” Rendiconti del Seminario Matematico, Fascicolo Speziale. Torino, Università e Politecnico, 1983, 81-89. Zbl0561.35008MR85f:35046
  10. [10] L. CATTABRIGA, E. De GIORGI, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. Un. Mat. Ital., (4) 4 (1971), 1015-1027. 
  11. [11] L. HÖRMANDER, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math., 21 (1973), 151-183. Zbl0282.35015MR49 #817
  12. [12] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators II, Grundlehren 257, Springer, Berlin, 1983. Zbl0521.35002MR85g:35002b
  13. [13] L. HÖRMANDER, An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1990. Zbl0685.32001
  14. [14] R. MEISE, B.A. TAYLOR, D. VOGT, Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier, 40-3 (1990), 619-655. Zbl0703.46025MR92e:46083
  15. [15] R. MEISE, B.A. TAYLOR, D. VOGT, Continuous linear right inverses for partial differential operators with constant coefficients and Phragmén-Lindelöf conditions, in “Functional Analysis”, K.D. Bierstedt, A. Pietsch, W. Ruess, D. Vogt (Eds.), Marcel Dekker, New York 1993, 357-389. Zbl0806.46041
  16. [16] R. MEISE, B.A. TAYLOR, D. VOGT, Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc., to appear. Zbl0896.32008
  17. [17] R. NARASIMHAN, Introduction to the Theory of Analytic Spaces, LNM 25, Springer, Berlin, 1966. Zbl0168.06003MR36 #428
  18. [18] R. NEVANLINNA, Eindeutige analytische Funktionen, Grundlehren 46, Springer, Berlin, 1974. Zbl0278.30002MR49 #9165
  19. [19] V.P. PALAMODOV, A criterion for splitness of differential complexes with constant coefficients, in Geometric and Algebraic Aspects in Several Complex Variables, C.A. Berenstein, D.C. Struppa (Eds.), EditEl 1991, 265-291. Zbl1112.58304MR94d:58137
  20. [20] L.C. PICCININI, Non-surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on ℝN, Boll. Un. Mat. Ital., (4) 7 (1973), 12-28. Zbl0264.35003MR48 #4480
  21. [21] H. WHITNEY, Complex Analytic Varieties, Addison-Wesley, Reading (Mass.), 1972. Zbl0265.32008MR52 #8473
  22. [22] G. ZAMPIERI, An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear partial differential equations, Boll. Un. Mat. Ital., (6) 5-B (1986), 361-392. Zbl0624.35011MR88a:35044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.