Poisson structures on certain moduli spaces for bundles on a surface
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 1, page 65-91
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHuebschmann, Johannes. "Poisson structures on certain moduli spaces for bundles on a surface." Annales de l'institut Fourier 45.1 (1995): 65-91. <http://eudml.org/doc/75119>.
@article{Huebschmann1995,
abstract = {Let $\Sigma $ be a closed surface, $G$ a compact Lie group, with Lie algebra $g$, and $\xi \colon P \rightarrow \Sigma $ a principal $G$-bundle. In earlier work we have shown that the moduli space $N(\xi )$ of central Yang-Mills connections, with reference to appropriate additional data, is stratified by smooth symplectic manifolds and that the holonomy yields a homeomorphism from $N(\xi )$ onto a certain representation space $\{\rm Rep\}_\{\xi \}(\Gamma ,G)$, in fact a diffeomorphism, with reference to suitable smooth structures $C^\{\infty \}(N(\xi ))$ and $C^\{\infty \}\left(\{\rm Rep\}_\{\xi \}(\Gamma ,G)\right)$, where $\Gamma $ denotes the universal central extension of the fundamental group of $\Sigma $. Given a coadjoint action invariant symmetric bilinear form on $g^*$, we construct here Poisson structures on $C^\{\infty \}(N(\xi ))$ and $C^\{\infty \}\left(\{\rm Rep\}_\{\xi \}(\Gamma ,G)\right)$ in such a way that the mentioned diffeomorphism identifies them. When the form on $g^*$ is non-degenerate the Poisson structures are compatible with the stratifications where $\{\rm Rep\}_\{\xi \}(\Gamma ,G)$ is endowed with the corresponding stratification and, furthermore, yield structures of a stratified symplectic space, preserved by the induced action of the mapping class group of $\Sigma $.},
author = {Huebschmann, Johannes},
journal = {Annales de l'institut Fourier},
keywords = {geometry of principal bundles; singularities of smooth mappings; symplectic reduction with singularities; Yang-Mills connections; stratified symplectic space; Poisson structure; geometry of moduli spaces; representation spaces; categorical quotient; geometric invariant theory; moduli of vector bundles},
language = {eng},
number = {1},
pages = {65-91},
publisher = {Association des Annales de l'Institut Fourier},
title = {Poisson structures on certain moduli spaces for bundles on a surface},
url = {http://eudml.org/doc/75119},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Huebschmann, Johannes
TI - Poisson structures on certain moduli spaces for bundles on a surface
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 1
SP - 65
EP - 91
AB - Let $\Sigma $ be a closed surface, $G$ a compact Lie group, with Lie algebra $g$, and $\xi \colon P \rightarrow \Sigma $ a principal $G$-bundle. In earlier work we have shown that the moduli space $N(\xi )$ of central Yang-Mills connections, with reference to appropriate additional data, is stratified by smooth symplectic manifolds and that the holonomy yields a homeomorphism from $N(\xi )$ onto a certain representation space ${\rm Rep}_{\xi }(\Gamma ,G)$, in fact a diffeomorphism, with reference to suitable smooth structures $C^{\infty }(N(\xi ))$ and $C^{\infty }\left({\rm Rep}_{\xi }(\Gamma ,G)\right)$, where $\Gamma $ denotes the universal central extension of the fundamental group of $\Sigma $. Given a coadjoint action invariant symmetric bilinear form on $g^*$, we construct here Poisson structures on $C^{\infty }(N(\xi ))$ and $C^{\infty }\left({\rm Rep}_{\xi }(\Gamma ,G)\right)$ in such a way that the mentioned diffeomorphism identifies them. When the form on $g^*$ is non-degenerate the Poisson structures are compatible with the stratifications where ${\rm Rep}_{\xi }(\Gamma ,G)$ is endowed with the corresponding stratification and, furthermore, yield structures of a stratified symplectic space, preserved by the induced action of the mapping class group of $\Sigma $.
LA - eng
KW - geometry of principal bundles; singularities of smooth mappings; symplectic reduction with singularities; Yang-Mills connections; stratified symplectic space; Poisson structure; geometry of moduli spaces; representation spaces; categorical quotient; geometric invariant theory; moduli of vector bundles
UR - http://eudml.org/doc/75119
ER -
References
top- [1] J. M. ARMS, R. CUSHMAN, and M. J. GOTAY, A universal reduction procedure for Hamiltonian group actions, in : The geometry of Hamiltonian systems, T. Ratiu, ed. MSRI Publ., 20 (1991), Springer Berlin-Heidelberg-New York-Tokyo, 33-51. Zbl0742.58016MR92h:58059
- [2] M. ATIYAH and R. BOTT, The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. London, A 308 (1982), 523-615. Zbl0509.14014MR85k:14006
- [3] W. M. GOLDMAN, The symplectic nature of the fundamental groups of surfaces, Advances in Math., 54 (1984), 200-225. Zbl0574.32032MR86i:32042
- [4] W. M. GOLDMAN, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Inventiones Math., 85 (1986), 263-302. Zbl0619.58021MR87j:32069
- [5] J. HUEBSCHMANN, Poisson cohomology and quantization, J. für die Reine und Angewandte Mathematik, 408 (1990), 57-113. Zbl0699.53037MR92e:17027
- [6] J. HUEBSCHMANN, On the quantization of Poisson algebras, Symplectic Geometry and Mathematical Physics, Actes du colloque en l'honneur de Jean-Marie Souriau, P. Donato, C. Duval, J. Elhadad, G.M. Tuynman, eds. ; Progress in Mathematics, Vol. 99, Birkhäuser, Boston Basel Berlin, (1991), 204-233. Zbl0752.58012MR93g:58051
- [7] J. HUEBSCHMANN, The singularities of Yang-Mills connections for bundles on a surface. I. The local model, Math. Z. (to appear). Zbl0844.58011
- [8] J. HUEBSCHMANN, The singularities of Yang-Mills connections for bundles on a surface II. The stratification, Math. Z. (to appear). Zbl0844.58011
- [9] J. HUEBSCHMANN, Holonomies of Yang-Mills connections for bundles on a surface with disconnected structure group, Math. Proc. Cambr. Phil. Soc, 116 (1994), 375-384. Zbl0843.58013MR95f:58020
- [10] J. HUEBSCHMANN, Smooth structures on certain moduli spaces for bundles on a surface, preprint 1992. Zbl0918.58011
- [11] J. HUEBSCHMANN, The singularities of Yang-Mills connections for bundles on a surface. III. The identification of the strata, in preparation. Zbl0844.58011
- [12] J. HUEBSCHMANN, Poisson geometry of flat connections for SU(2)-bundles on surfaces, Math. Z. (to appear). Zbl0844.58014
- [13] J. HUEBSCHMANN, Symplectic and Poisson structures of certain moduli spaces, Duke Math. (to appear). Zbl0852.58037
- [14] J. HUEBSCHMANN and L. JEFFREY, Group cohomology construction of symplectic forms on certain moduli spaces, Int. Math. Research Notices, 6 (1994), 245-249. Zbl0816.58017MR95e:58033
- [15] Y. KARSHON, An algebraic proof for the symplectic structure of moduli space, Proc. Amer. Math. Soc., 116 (1992), 591-605. Zbl0790.14012MR93a:14010
- [16] J. MARSDEN and A. WEINSTEIN, Reduction of symplectic manifolds with symmetries, Rep. on Math. Phys., 5 (1974), 121-130. Zbl0327.58005MR53 #6633
- [17] M. S. NARASIMHAN and C. S. SESHADRI, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math., 82 (1965), 540-567. Zbl0171.04803MR32 #1725
- [18] M. S. NARASIMHAN and S. RAMANAN, Moduli of vector bundles on a compact Riemann surface, Ann. of Math., 89 (1969), 19-51. Zbl0186.54902MR39 #3518
- [19] M. S. NARASIMHAN and S. RAMANAN, 2θ-linear systems on abelian varieties, Bombay Colloquium, (1985), 415-427. Zbl0685.14023MR88j:14014
- [20] C. S. SESHADRI, Spaces of unitary vector bundles on a compact Riemann surface, Ann. of Math., 85 (1967), 303-336. Zbl0173.23001MR38 #1693
- [21] R. SJAMAAR and E. LERMAN, Stratified symplectic spaces and reduction, Ann. of Math., 134 (1991), 375-422. Zbl0759.58019MR92g:58036
- [22] A. WEINSTEIN, On the symplectic structure of moduli space, A. Floer memorial, Birkhäuser Verlag, to appear. Zbl0834.58011
- [23] H. WHITNEY, Analytic extensions of differentiable functions defined on closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89. Zbl0008.24902MR1501735JFM60.0217.01
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.